皮尔逊、肯德尔、斯皮尔曼相关分析分别是针对什么_用Excel做相关性分析

f82c03696162e47fa7e828db7b477b23.png

一、概念理解

相关关系:变量之间存在着的非严格的不确定的关系,对它们进行深层次的分析,观察它们的密切程度。

相关性分析:对变量之间相关关系的分析,即相关性分析。其中比较常用的是线性相关分析,用来衡量它的指标是线性相关系数,又叫皮尔逊相关系数,通常用r表示,取值范围是[-1,1],

89c314fc70ea386e0f20baa86d68e7b5.png

bad0ba838286b6f317601c5524736fb7.png

二、实际应用

1、CORREL函数

在Excel中,可以用CORREL函数来计算相关系数,如我们对B列和C列进行分析,可以得到它的相关系数是0.95157,呈强相关。

d63608a48999ae24ccf8db5065e029c9.png

2、数据分析

Excel里还可以用数据——数据分析——相关系数,这个功能来进行相关分析。数据分析这个功能怎么激活可以百度一下。

7da8c68011d12c9e9062367958328c7e.png

这里,我们可以对B C D三列一起进行分析,要注意的是,输入区域不能有非数值型数据,就是表头就不要包含了。

39701c402ae5a27ec15f73fec2c54774.png

可以得到分析后的结果,列1、列2、列三分别对应B C D列,BC两列的相关系数是0.95157,和我们用CORREL函数计算出来的是一样的;BD两列的相关系数是0.832857,也是强相关;CD两列的相关系数是0.942791.

6865482fa13198d6ceb559dbda0fdced.png

三、相关分析的呈现方式

还是刚才的数据,我们用折线图来呈现,很直观的可以看出来X1随着Y的增大而增大。呈正相关。

11293f15729094ec32b96140d457e379.png

还可以用散点图来表示,横坐标是Y列值,纵坐标是X1列值,通过斜率的关系,可以看出它们呈正相关。

3ea6fe5b218374491df1d8c4704b22c4.png

四、为什么要做相关分析

1、简单的相关性分析——如QC

做相关性分析,首先,很明显的一点是,了解两个或几个变量之间的关系,在做QC(质量管理)的时候,在要因确认这一项中会用到相关性分析,我们想要知道我们分析出来的末端因素和目标值之间有无相关关系,从而判断该末端因素对症结的影响程度。如随着工作人员培训次数的减少,产品合格率也降低,则说明工作人员培训不足呈强相关,是引起合格率降低的主要原因。

2、搭建模型时筛选有效的输入变量

原始数据有很多字段,但我们不一定全都将它们输入到模型中,这时要进行对输入变量的筛选,也可以提高分类模型的预测能力。输入的变量过多,可能会导致共线性问题,即输入的自变量之间存在较强的相关关系,多个自变量强相关,这显然是没有必要的,也浪费了资源和效率,只选择其中一个即可,因此用相关性分析可以避免共线性问题。当然解决共线性问题还有其他的方法,如主成分分析、聚类等,以后再细讲吧。

@文章属原创,转载请联系作者,侵权必究

@作者:可乐,在数据分析的道路上努力奔跑

@微信公众号:可乐的数据分析之路

@本文首发于CSDN博客,作者:data_cola

文章精选:

可乐:用Excel做排列图​zhuanlan.zhihu.com
dfffb09d582be3f9cf997dce82973efa.png
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页