python垃圾分类图像识别算法_Python 深度学习进行垃圾分类,测试精度达到98

使用Python和TensorFlow实现的深度学习模型对垃圾分类进行图像识别,通过数据增强提高训练集效果,模型测试精度达98%。文章介绍了数据预处理、模型构建和训练过程。
摘要由CSDN通过智能技术生成

%matplotlib inline

import yaml

import sys,time

import string

import json

from tensorflow.python.keras.models import model_from_json

from tensorflow.python.keras.models import model_from_yaml

import pylab

import warnings

warnings.filterwarnings('ignore')

import matplotlib.pyplot as plt

import PIL

import tensorflow as tf

import numpy as np

import os

from multiprocessing import Pool

from tensorflow.python.keras.callbacks import ModelCheckpoint,ReduceLROnPlateau,EarlyStopping

from tensorflow.python.keras.preprocessing import image

from PIL import Image

import matplotlib.image as mpimg

from tensorflow.python.keras.callbacks import TensorBoard

from tensorflow.python.keras import layers

from tensorflow.python.keras.wrappers.scikit_learn import KerasClassif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值