PCA主成分分析法

主成分分析法(PCA)

在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。

I. 主成分分析法(PCA)模型

(一)主成分分析的基本思想

主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望越大,表示包含的信息越多。因此在所有的线性组合中所选取的应该是方差最大的,故称为第一主成分。如果第一主成分不足以代表原来个变量的信息,再考虑选取即第二个线性组合,为了有效地反映原来信息,已有的信息就不需要再出现在中,用数学语言表达就是要求,称为第二主成分,依此类推可以构造出第三、四……第个主成分。

(二)主成分分析的数学模型

对于一个样本资料,观测个变量,个样品的数据资料阵为:

其中:

主成分分析就是将个观测变量综合成为个新的变量(综合变量),即

简写为:

               

要求模型满足以下条件:

①互不相关(,)

②的方差大于的方差大于的方差,依次类推

③ 

于是,称为第一主成分,为第二主成分,依此类推,有第个主成分。主成分又叫主分量。这里我们称为主成分系数。

上述模型可用矩阵表示为:

,其中

           

称为主成分系数矩阵。

(三)主成分分析的几何解释

假设有个样品,每个样品有二个变量,即在二维空间中讨论主成分的几何意义。设个样品在二维空间中的分布大致为一个椭园,如下图所示:

图1  主成分几何解释图

将坐标系进行正交旋转一个角度,使其椭圆长轴方向取坐标,在椭圆短轴方向取坐标,旋转公式为

写成矩阵形式为:

其中为坐标旋转变换矩阵,它是正交矩阵,即有,即满足。

经过旋转变换后,得到下图的新坐标:

图2  主成分几何解释图

新坐标有如下性质:

(1)个点的坐标和的相关几乎为零。

(2)二维平面上的个点的方差大部分都归结为轴上,而轴上的方差较小。

和称为原始变量和的综合变量。由于个点在轴上的方差最大,因而将二维空间的点用在轴上的一维综合变量来代替,所损失的信息量最小,由此称轴为第一主成分,轴与轴正交,有较小的方差,称它为第二主成分。

 

II. 主成分分析法(PCA)推导

一、主成分的导出

根据主成分分析的数学模型的定义,要进行主成分分析,就需要根据原始数据,以及模型的三个条件的要求,如何求出主成分系数,以便得到主成分模型。这就是导出主成分所要解决的问题。

1、根据主成分数学模型的条件①要求主成分之间互不相关,为此主成分之间的协差阵应该是一个对角阵。即,对于主成分,

其协差阵应为,

=

2、设原始数据的协方差阵为,如果原始数据进行了标准化处理后则协方差阵等于相关矩阵,即有,

3、再由主成分数学模型条件③和正交矩阵的性质,若能够满足条件③最好要求为正交矩阵,即满足

于是,将原始数据的协方差代入主成分的协差阵公式得

展开上式得

展开等式两边,根据矩阵相等的性质,这里只根据第一列得出的方程为:

为了得到该齐次方程的解,要求其系数矩阵行列式为0,即

显然,是相关系数矩阵的特征值,是相应的特征向量。

根据第二列、第三列等可以得到类似的方程,于是是方程

的个根,为特征方程的特征根,是其特征向量的分量。

4、下面再证明主成分的方差是依次递减

设相关系数矩阵的个特征根为,相应的特征向量为

相对于的方差为

同样有:,即主成分的方差依次递减。并且协方差为:

综上所述,根据证明有,主成分分析中的主成分协方差应该是对角矩阵,其对角线上的元素恰好是原始数据相关矩阵的特征值,而主成分系数矩阵的元素则是原始数据相关矩阵特征值相应的特征向量。矩阵是一个正交矩阵。

于是,变量经过变换后得到新的综合变量

新的随机变量彼此不相关,且方差依次递减。

 

、主成分分析的计算步骤

假设样本观测数据矩阵为:

第一步:对原始数据进行标准化处理。

 

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PCA主成分分析)是一种常用的降维技术,它通过将原始数据投影到新的特征空间来实现数据的降维和去除冗余信息。下面是PCA主成分分析的步骤: 1. 数据标准化:首先,需要对原始数据进行标准化处理,确保数据的均值为0,方差为1。这一步骤可以保证不同尺度的数据能够被平等对待。 2. 计算协方差矩阵:接下来,需要计算数据的协方差矩阵。协方差矩阵反映了数据中不同特征之间的相关性。 3. 计算特征值和特征向量:通过对协方差矩阵进行特征值分解,可以得到该矩阵的特征值和特征向量。特征向量代表了数据在新特征空间中的方向,而特征值代表了数据在这些方向上的重要程度。 4. 选择主成分:根据特征值的大小,可以选择最重要的特征向量作为新的特征空间的基。通常情况下,选择特征值较大的前k个特征向量作为主成分。 5. 构建投影矩阵:将选定的k个特征向量按列组成投影矩阵,用这个矩阵将原始数据投影到新的k维特征空间中。 6. 数据转换:最后,利用构建的投影矩阵,对原始数据进行线性变换,即将原始数据映射到新的k维特征空间中。这样就实现了数据的降维和去除冗余信息。 通过以上步骤,PCA主成分分析可以帮助我们在保留数据主要特征的基础上,将高维的原始数据转化为低维的新特征空间,从而方便我们进行进一步的数据分析和处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值