3.样本分类不均衡:不同类别的样本差别很大
解决方法:过抽样、欠抽样、惩罚权重(与样本数量呈反比的权重)、组成/集成方法(从大样本中随机抽取数据来与小样本合并)
5.多重共线性:输入的自变量之间存在较高的线性相关度,造成回归模型的稳定性和准确性大大降低;
如何检验共线性:方差膨胀因子(VIF):VIF<10不存在;10
6.解决共线性:增大样本量n;岭回归;逐步回归法;主成分回归;人工去除。
7.因果&相关:相关是逻辑上的并列相关关系,因果联系是因为X1所以X2的逻辑关系
8.数据标准化:Z-Score:x'=(x-men(x))/std;归一化x'=(x-min)/(max-min);稀疏矩阵x'=x/[max] ‘所载列的最大值’
9.离散化:将无限空间中的有限个体映射到有限的空间中
针对连续数据的离散化:分位数法:四分位数、五分位数 ;距离区间法:等距区间或自定义区间 ;频率区间法:将数据按照不同数据的频率分布排序 ,聚类法:K值聚类
11.防止过拟合:使用更多数据、降维、使用正则化(通过定义不同特征的参数保证每个特征有一定的效用)
12.Python工作库有三种类型:分别是Python内置标准库(Python自带库,如re、string、datetime)、第三方库(第三方主体开发的流行库,如Sklearn、Numpy、Pandas)和自定义库(本地的相关程序,一般是自定义的功能模块)
13.17个新手常见Python运行时错误17个新手常见Python运行时错误 - 51CTO.COMdeveloper.51cto.com
14.当.py文件被直接运行时,if __name__ == '__main__'之下的代码块将被运行;当.py文件以模块形式被导入时,if __name__ == '__main__'之下的代码块不被运行。如何简单地理解Python中的if __name__ == '__main__'blog.csdn.net
16.
18.python缺失值有3种:
1)Python内置的None值
2)在pandas中,将缺失值表示为NA,表示不可用not available
3)对于数值数据,pandas使用浮点值NaN(Not a Number)表示缺失数据
None是Python的一种数据类型,NaN是浮点类型两个都用作空值
19.
20. merge:通过相同的列当做键
concat:默认按行将DataFrame组合到一起,若要按列axis=1
23.路径和文件名中不要用中文,不然会报错
在用pandas.read_csv()读取csv时,遇到 ‘utf-8’ codec can’t decode byte 0xba in position 0: invalid start byte 但是又必须要中文解码,解决办法是设置read_csv中encoding = ‘GB2312’。
encoding用于指定文件的编码,因为读取的csv中有中文,所以指定文件编码为中文编码“GBK”
data = pd.read_csv('C:\\houzi\\test\\data.csv', encoding = 'GBK')
data.head()
本文探讨了数据处理中常见的挑战,如样本分类不均衡、共线性问题及缺失值处理等,并介绍了相应的解决策略。此外,还涉及了数据标准化、离散化方法,预防过拟合的手段以及Python在数据处理中的应用。

被折叠的 条评论
为什么被折叠?



