均方误差mse均方根误差rmse_基于用户、项目的协同过滤推荐算法对比试验代码实现 测评指标RMSE均方根误差 MAE平均绝对误差...

# 基于用户与基于项目的协同过滤推荐算法对比试验代码实现 协同过滤推荐算法测评指标RMSE均方根误差 MAE平均绝对误差

一、实现原理和步骤

1、使用movielens数据集(943个用户,1682部电影,80000条评分数据); 2、构建用户-电影评分矩阵; 3、数据统计分析; 4、冷启动推荐; 5、输入用户id(1-943); 6、基于用户的协同过滤推荐算法; 7、基于项目的协同过滤推荐算法; 8、计算推荐算法测评指标rmse值。

二、实现代码

1、项目目录

4d602213bb0dc8137a613d0b5da7ccfb.png

2、项目运行主方法

582577633b92cddcddbd726c687a5f5c.png

601d8c86c444b68f3e02b99f42ebfe61.png

3、项目常量

76316b3a3c38e0365fd7416553c7db32.png

4、构建用户-项目评分矩阵

8e53bbc0cd112abebf6c2d53254e51f1.png

5、数据统计与分析

83fe50719e148b1223885ca32db63813.png

6、冷启动推荐

6b8f6f49b23c78265185deba0b2bb64c.png

7、基于用户的协同过滤推荐算法

141f8b1892cf3e876311c87cce2fc370.png

8、基于项目的协同过滤推荐算法

e62499b717197bfedb2161a99a668ab6.png

9、协同过滤推荐算法测评指标RMSE

5ef1daa23ddabe6258232623053ee4cf.png

三、运行结果

1、初始化

3b2f307adb989939ab071fdce1d03643.png

2、用户-项目评分矩阵输出

1f8548a0a3745b8ebc680dff141cb489.png

3、数据统计与分析结果

252fc6452eea337023568a03ffa74064.png

4、冷启动推荐结果

3bc8239782068050626f74c29210b030.png

5、部分用户相似度

11a6c8770d587ae080abe823b7353f9f.png

6、基于用户的协同过滤推荐算法结果

49e4006119171849fa3c718f283b266c.png

7、部分项目相似度

203733465d12c8563873610855301fb1.png

8、基于项目的协同过滤推荐算法结果与测评指标RMSE

06baa7e2737853faa98aa55c644762a7.png

作者专业长期研究各种协同过滤推荐算法,欢迎留言、私信互相交流学习,后续会不断更新不同的协同过滤推荐算法,欢迎关注。扣511873822

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页