【导语】程序员每日都在和 debug 相伴。新手程序员需要学习的 debug 手段复杂多样,设置断点、查看变量值……一些网站还专门针对debug撰写了新手教程。老司机们在大型的项目中要 debug 的问题不一样,模块众多、代码超长,面对大型项目的debug之路道阻且长。针对新手和老手程序员会遇到的不同debug问题,本文推荐了两个GitHub上的开源debug工具:PySnooper 和 Behold,帮助大家更加优雅、简洁地 debug 代码。
前言
在之前的推荐中,营长为大家介绍过一些有趣的实用工具,包括自动化UI测试工具、代码修复神器、帮小白快速修复error、pdf翻译工具、变量命名神器等等。今天,营长要为大家推荐两个基于 Python 的 debug 工具:PySnooper 和 Behold,帮助大家对不同规模的项目,有针对性的优雅 debug。
查看变量值,是 debug 过程中常要做的一件事。Python 开发者们除了使用 print 对变量逐个输出以外,是否还有其他方法可用呢?其实,使用 Print 语句查看变量有时候也很繁琐:首先需要找到变量所在的代码行,然后注释掉部分代码,再加一行输出命令;之后再根据原步骤进行复原。这波操作在代码量较大时就要耗费大量精力了,并且如果忘记复原,或者在复原代码时出现手误,甚至可能在 debug 过程中再新加 Bug,着实不值得!
此外,在一些大型项目上,我们有时只需要对项目的部分模块或代码行进行调试,但 Python 项目调试的时候需要人工对代码进行划分,以满足调试需求,这就使 debug 变得更困难。
为了让大家更专注写代码、debug 更轻松,营长特别选取了两个 Github 的 debug 神器:PySnooper 和 Behold,分别推荐给新手和大型代码项目的老司机。
接下来,先简单介绍并比较两个工具的特性,之后再具体讲解使用步骤、功能,如果想查看工具源代码和文档,可以到文末查看,别忘了给营长点”在看“!
PySnooper 与 Behold 对比:
对象不同,简洁相同
- 使用对象不同
两个项目有何异同?两个作者对项目的描述就能轻松发现两者的不同:PySnooper——a poor man's debugger”,针对新手程序员;Behold——为大型Python项目专门搭建的 debug 工具。
- 安装与使用
两个工具都不约而同地把“简便易用”作为了首要目标。PySnooper 和 Behold 都是一行代码搞定:”pip install“。使用上,两者对查看变量做了针对性地改进,都支持使用一行命令输出多个变量,不同于以往使用 print 语句的方式。
- 特性
比较而言,PySnooper 更适用于调试单个函数,对函数变量的更改过程、指向操作所在代码行上更突出,可以对变量值及值发生改变时所对应的代码行进行输出,并将输出存储为文件。而 Behold 更加注重对代码的整体调试,以及 debug 时对变量的筛选,例如支持对全局变量和局部变量的区分等。
具体而言,PySnooper 的特性包括:
- 输出关于某个函数中变量更改的详细过程记录,包括变量的值、使变量更改的相关代码行、更改时间
- 将上述记录输出为一个.log文件
- 查一个或多个非局部变量的值
- 输出调试函数所引用的函数的变量更改记录
- 在缓存中输出记录,提高运行速度
Behold 的特性包括:
- 简单输出一个或多个变量的改变过程
- 依据变量的值对输出进行条件筛选
- 对变量的输出值给予自定义标签,提高输出结果的区分度
- 依据调试变量所在函数的所属模块筛选是否输出变量值
- 输出对象的部分或全部属性
- 依据全局变量和局部变量对输出进行筛选
- 将输出存储为Pandas.Dataframe格式的数据
- 在输出时使用自定义字典对变量输出的值进行重新定义
PySnooper: 新手程序员救星
1.安装:使用pip
pip
2.设置需要调试的函数:使用@pysnooper.snoop()
import pysnooper
@pysnooper.snoop()
def number_to_bits(number):
if number:
bits = []
while number:
number, remainder = divmod(number, 2)
bits.insert(0, remainder)
return bits
else:
return [0]
number_to_bits(6)
输出如下:
Starting var:.. number = 6
21:14:32.099769 call 3 @pysnooper.snoop()
21:14:32.099769 line 5 if number:
21:14:32.099769 line 6 bits = []
New var:....... bits = []
21:14:32.099769 line 7 while number:
21:14:32.099769 line 8 number, remainder = divmod(number, 2)
New var:....... remainder = 0
Modified var:.. number = 3
21:14:32.099769 line 9 bits.insert(0, remainder)
Modified var:.. bits = [0]
21:14:32.099769 line 7 while number:
21:14:32.099769 line 8 number, remainder = divmod(number, 2)
Modified var:.. number = 1
Modified var:.. remainder = 1
21:14:32.099769 line 9 bits.insert(0, remainder)
Modified var:.. bits = [1, 0]
21:14:32.099769 line 7 while number:
21:14:32.099769 line 8 number, remainder = divmod(number, 2)
Modified var:.. number = 0
21:14:32.099769 line 9 bits.insert(0, remainder)
Modified var:.. bits = [1, 1, 0]
21:14:32.099769 line 7 while number:
21:14:32.099769 line 10 return bits
21:14:32.099769 return 10 return bits
3.将上述记录输出为文件,并保存在文件夹:文件命名为file.log,保存在“/my/log/”文件夹:
@pysnooper.snoop('/my/log/file.log')
4.查看一个或多个非局部变量的值:查看foo.bar, self.whatever变量的改变过程,这两个变量不在number_to_bits函数中
@pysnooper.snoop(variables=('foo.bar', 'self.whatever'))
5.输出调试函数所引用的函数的变量更改记录:
@pysnooper.snoop(depth=2)
6.在缓存中输出记录,提高运行速度:
@pysnooper.snoop(prefix='ZZZ ')
Beholder: 针对大型Python项目的调制工具
1.安装:使用pip
pip install behold
2.简单输出一个或多个变量的改变过程:
from behold import Behold
letters = ['a', 'b', 'c', 'd', 'A', 'B', 'C', 'D']
for index, letter in enumerate(letters):
# 输出效果等价于如下代码
# print('index: {}, letter: {}'.format(index, letter))
Behold().show('index', 'letter')
3.依据变量的值对输出进行条件筛选:
from behold import Behold
letters = ['a', 'b', 'c', 'd', 'A', 'B', 'C', 'D']
for index, letter in enumerate(letters):
# 输出效果等价于如下代码
# if letter.upper() == letter and index % 2 == 0:
# print('index: {}'.format(index))
Behold().when(letter.upper() == letter and index % 2 == 0).show('index')
4.对变量的输出值给予自定义标签,提高输出结果的区分度:这里依据变量的值分别打“even_uppercase”和“odd_losercase”标签,附在变量之后
from behold import Behold
letters = ['a', 'b', 'c', 'd', 'A', 'B', 'C', 'D']
for index, letter in enumerate(letters):
# 输出效果等价于如下代码
# if letter.upper() == letter and index % 2 == 0:
# print('index: {}, letter:, {}, even_uppercase'.format(index, letter))
# if letter.upper() != letter and index % 2 != 0:
# print('index: {}, letter: {} odd_lowercase'.format(index, letter))
Behold(tag='even_uppercase').when(letter.upper() == letter and index % 2 == 0).show('index', 'letter')
Behold(tag='odd_lowercase').when(letter.lower() == letter and index % 2 != 0).show('index', 'letter')
5.依据调试变量所在函数的所属模块筛选是否输出变量值:
首先使用behold对函数设定调试规则:
from behold import Behold
# 这是一个在代码库中常用的自定义函数
def my_function():
x = 'hello' # 这是函数本身的逻辑
# 在“testing”环境时输出x的值
Behold().when_context(what='testing').show('x')
# 仅在“debug”环境时对函数进行调试输出
if Behold().when_context(what='debugging').is_true():
import pdb; pdb.set_trace()
在另一个代码模块中对设定调试规则的函数进行调试:
from behold import in_context
# 设置context为“testing”
@in_context(what='testing')
def test_x():
my_function()
test_x() # 将输出'x: hello'
# 使用环境管理器设置环境为“debugging”以进行调试
with in_context(what='debugging'):
my_function() # 转至pdb调试工具
6.输出对象的部分或全部属性:使用“with_args”指定调试对象的部分属性,使用“no_args”输出调试对象的全部属性
from behold import Behold, Item
item = Item(a=1, b=2, c=3)
#输出对象的部分属性
Behold(tag='with_args').show(item, 'a', 'b')
#输出对象的全部属性
Behold(tag='no_args').show(item)
7.依据全局变量和局部变量对输出进行筛选:
from __future__ import print_function
from behold import Behold, Item
# 定义全局变量
g = 'global_content'
# 定义一个函数,设定局部变量
def example_func():
employee = Item(name='Toby')
boss = Item(employee=employee, name='Michael')
print('# Can't see global variable')
Behold().show('boss', 'employee', 'g')
print('n# I can see the the boss's name, but not employee name')
Behold('no_employee_name').show(boss)
print('n# Here is how to show global variables')
Behold().show(global_g=g, boss=boss)
# 可以对变量的输出顺序进行调整
print('n# You can force variable ordering by supplying string arguments')
Behold().show('global_g', 'boss', global_g=g, boss=boss)
print('n# And a similar strategy for nested attributes')
Behold().show(employee_name=boss.employee.name)
example_func()
8.将输出存储为Pandas.Dataframe格式的数据:需要对变量值的标签进行定义,标签将存储为变量的键值
from __future__ import print_function
from pprint import pprint
from behold import Behold, in_context, get_stash, clear_stash
def my_function():
out = []
for nn in range(5):
x, y, z = nn, 2 * nn, 3 * nn
out.append((x, y, z))
# 对变量值的标签进行定义
# 尽在测试x的环境下存储y和z的值
Behold(tag='test_x').when_context(what='test_x').stash('y', 'z')
# 仅在测试y的环境下存储x和z的值
Behold(tag='test_y').when_context(what='test_y').stash('x', 'z')
# 仅在测试z的环境下存储x和y的值
Behold(tag='test_z').when_context(what='test_z').stash('x', 'y')
return out
@in_context(what='test_x')
def test_x():
assert(sum([t[0] for t in my_function()]) == 10)
@in_context(what='test_y')
def test_y():
assert(sum([t[1] for t in my_function()]) == 20)
@in_context(what='test_z')
def test_z():
assert(sum([t[2] for t in my_function()]) == 30)
test_x()
test_y()
test_z()
print('n# contents of test_x stash. Notice only y and z as expected')
pprint(get_stash('test_x'))
print('n# contents of test_y stash. Notice only x and z as expected')
pprint(get_stash('test_y'))
print('n# contents of test_z stash. Notice only x and y as expected')
print(get_stash('test_z'))
也可以对存储的结果进行清除。
clear_stash()
当该命令的参数为空时,默认清除所有调试数据的缓存。如果想要指定清除某个或某些参数的调试缓存数据,则需在参数中进行指定。
9.在输出时使用自定义字典对变量输出的值进行重新定义:
下例中对变量的值进行了自定义。假设自定义字典中的键值为数据库索引,下例展示了将该索引转变为自定义标签的方法。
from __future__ import print_function
from behold import Behold, Item
# 定义Behold的子类以支持自定义的属性提取
class CustomBehold(Behold):
@classmethod
def load_state(cls):
cls.name_lookup = {
1: 'John',
2: 'Paul',
3: 'George',
4: 'Ringo'
}
def extract(self, item, name):
# 如果没有加载lookup state,则先进行加载
if not hasattr(self.__class__, 'name_lookup'):
self.__class__.load_state()
# 抽取变量的值
val = getattr(item, name)
# 如果变量是一个Item类变量,则进行值转换
if isinstance(item, Item) and name == 'name':
return self.__class__.name_lookup.get(val, None)
# 否则使用Behold默认的转换函数
else:
return super(CustomBehold, self).extract(item, name)
# 定义一组Item变量用于测试
items = [Item(name=nn) for nn in range(1, 5)]
print('n# Show items using standard Behold class')
for item in items:
Behold().show(item)
print('n# Show items using CustomBehold class with specialized extractor')
for item in items:
CustomBehold().show(item, 'name', 'instrument')
总结
在本文中,营长针对新手程序员和 Python 大型项目的代码调试为大家分别推荐了PySnooper和Behold两个调试工具,帮助大家简化代码调试过程、优化调试输出,以提高代码调试效率,希望对大家有所帮助。在未来,营长也会继续努力为大家发掘更多好用的工具,帮助大家更优雅地书写代码。
PySnooper的Github地址: https:// github.com/cool-RR/PySn ooper/tree/2c8c74903d20e0e52e358ce95af437a18f5fb495
Behold的Github地址: https:// github.com/robdmc/behol d
(本文为Python大本营原创文章,转载请微信联系1092722531)