混淆矩阵代码实现Java,混淆矩阵丶Java教程网-IT开发者们的技术天堂

预测0

预测1

实际0

True negative

False positive

实际1

False negative

True positive

简单的说就是混淆矩阵有四个部分,这四个部分由预测结果和实际标签两个部分交叉出来的结果。

首先说按照老外的思维:对于结果有两个态度,一个是积极的(positive),一个是消极的(negative)。

所以预测为1的时候,被称为positive,被预测为消极的时候,被称为negative。

当实际值为1,但预测为消极的时候,这时的结论就是假消极,(False negative)。当实际值为0,预测值也为0的时候,这时的结论就是真消极(True nagative)。

当实际值为0,但预测为积极的时候,这时的结论就是假积极,(False positive)。 当实际值为1,预测值也为1的时候,这时的结论就是真积极(True positive)

from sklearn.metrics import confusion_matrix

y_true = [0,1,0,1,1,1,0,1,0,0]

y_pred = [0,0,0,1,1,0,0,1,0,1]

confusion_matrix(y_true, y_pred)

return:

array([[4, 1],

[2, 3]], dtype=int64)

cm = confusion_matrix(y_true=y_test, y_pred = log_reg.predict(Xtest))

准确度 accuracy = (TP + TN)/(TP+TN+FP+FN)

错误率 error rate = (FP + FN)/(TP+TN+FP+FN)

查准率 precision = (TP)/(TP+FP)  (猜对1)

敏感度 sensitivity = recall = TP/(TP+FN) (找到)

特异度 specificity = TN/(TN+FP)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值