cnn输入层_【计算机系统应用】(第八十九期)基于CNN和LSTM联合预测并修正的电量缺失数据预测...

点击上方“ 蓝字”,关注我们吧! 2e4e9eda264313f20607b3c488010a9a.png bdb51d5bbc140e34435895190a7af720.gif

数据是电网调度控制系统稳定运行的关键依据, 而因为硬件故障等原因导致数据采集过程中的数据缺失会 影响到系统数据的完整性, 从而对电网调度的智能性和高效性产生相应的影响. 因此, 针对缺失数据的准确预测对 于智能电网调度系统的建设有着重要的意义. 本文针对解决电网领域电能量采集系统的缺失数据预测问题对已有 的基于 CNN 和 LSTM 联合预测方法进行改进和优化, 在联合预测模型基础上添加修正模型, 针对不同缺失数据段 利用 CNN 卷积神经网络和电力数据里特有的对侧数据场景建模, 实验结果证明该方法将平均绝对误差值降到 0.142, 提高了现有预测模型的准确率, 对电网调度系统的智能性和高效性提供了数据完整性、准确性的保障.

594fa47306eca2f30ddaa6510e968971.png

1   引言

随着智能化系统以及各种先进智能技术在各领域 的流行, 电网领域的智能电网调度控制系统建设也应 运而生, 从而提高电量的使用率和调度工作效率. 在智

能电网调度控制系统中, 电量数据是传输数据中的重 要组成, 而电量数据的获取是通过不同地区的观测点 设备的读数记录的, 为了提高系统跨区域电量数据传 输效率, 观测点设备每隔 5 分钟、10 分钟或 15 分钟读 取一次数据, 每天记录的数据组成一个传输数据单元 并打包传递给下一个记录读取观测点. 在数据记录传 输过程中, 可能会因为设备故障等原因导致读取数据 的缺失或错误, 从而影响传输数据单元的数据完整性, 进一步影响智能电网调度控制系统的智能性, 因此, 需 要提出一种对于电量缺失数据精准预测的模型方法为 智能电网调度控制系统提供支撑.

关于电量缺失数据预测问题是一个时序预测问题, 随着机器学习神经网络等算法的发展和日趋成熟, 研 究用于解决时序预测问题的时序预测模型也越来越多, 比如: 传统的平滑预测法、趋势预测法、自回归模型 (AR)、移动平均模型 (MA)、以及自回归移动平均模 型 (ARMA) 和差分整合移动平均自回归模型 (ARIMA) 等. 平滑法预测一般有移动平滑法和指数平滑法, 移动 平滑法是利用前 t 时刻的前 p 个时刻的平均值来预测 t 时刻的数值, 而指数平滑法是在移动平滑法基础上发 展起来的一种时间序列分析预测法, 这种模型预测方 法只需较少的实验数据, 就可以预测出来所需要的结 果, 但是该模型算法在赋权重的时候, 对远期数据赋较 小的权重, 近期数据赋较大的权重, 因此, 只能进行短 期预测, 预测范围较为局限; 在现实工作预测中, 为了 提高工作效率选择趋势预测法, 既将缺失数据两端直 接连接的方法进行数据缺失段预测, 该方法在实际项 目工作中最大的优点就是方便, 直接根据趋势线性预 测就能得到预测值, 但缺点显而易见, 预测数据误差也 是很高的, 并不能完成精准预测; AR 模型以时间序列 的前一个值和当前残差来线性地表示时间序列的当前 值, 而 MA 模型则用时间序列的当前值和先前的残差 序列来线性地表示时间序列的当前值, ARMA 模型是 前面两个模型的整合, 这 3 种模型都适用于平稳时间 序列的预测, 而对于非平稳时间序列, 可以通过差分过 程将非平稳数据转换为平稳数据后用 ARIMA 模型可 以解决. 文献 [1] 通过实验比较了 ARIMA 模型与指数 平滑法预测门诊量效果比较, 从而得出 ARIMA 模型 的预测效果更好的结论. 但是, ARIMA 模型对于趋势 性较强的数据集预测效果更好, 而且本质上只能捕捉 线性关系, 而对于电网数据来讲并不能完全的线性拟合, 因为用电量会有高峰期, 亦或会在某些特殊地段的 用电量会因为特殊事件发生突变, 例如当附近的高铁 经过时引起的电量变化情况. 对于电力方面的预测, 文献 [2] 提出了一种基于趋势变化分段的电力负荷组合预测方 法, 该算法是利用了电力负荷“三峰三谷”变化特性做 出的研究, 但本文要解决的问题是一天内用电量数据 的缺失值预测, 显然一天内的用电量数据值一定是递 增的, 不会出现“谷”, 因此并不适合. 对于时序序列的 非线性预测方法, LSTM 算法是较成熟切主流的时序 预测方法. 文献 [3] 提出基于 LSTM 算法的电力谐波 监测数据预测分析的方法, 通过对不同时间尺度谐波 监测数据预测分析验证了方法的有效性和实用性, 文献 [4] 提出基于 LSTM 模型的日销售额预测方法, 但电量数 据会因为某一时刻的突发事件发生电量数据的突增, 如果仅仅通过 LSTM 模型根据历史数据进行预测误差 一定会大, 因此采用电网中的对侧数据这一特征数据 进行校验, 以此缩小预测值的预测误差基于对上述方法的总结并综合电网数据易突变的 特性, 本文对现有的 LSTM 预测方法联合 CNN 预测应 用于电网领域, 并在该联合预测模型的基础上添加对 侧数据修正模块进行模型的进一步优化。通过 CNN 卷积神经网络将特征进行融合后重新提取新特征, 通 过电网中的对侧数据作为修正, 从而降低仅通过 LSTM 预测的误差. 根据缺失数据在传输数据段中的位置, 本 文将预测模型分成 3 组, 分别是缺失数据段位于传输 数据段的前段、中段和后段, 将从某电网获取的实验 数据分成 3 组, 分别用于训练 3 种不同情况下的预测 模型. 将每组数据先通过数据预处理模块, 将经过预处 理的数据通过卷积神经网络进行模型新特征的提取, 提高预测的准确率, 并将新特征作为 LSTM 神经网络 的输入进行 LSTM 模型的学习与训练, 并反向计算每 个神经元的误差项值, 根据相应的误差项, 计算每个权 重的梯度, 完成 CNN 和 LSTM 联合预测模型的训练和 学习. 将模型学习后输出的预测值输入到数据修正模 块, 该模块采用电网数据中特有的对侧数据属性进行 数据修正, 加入电网数据中特有的对侧数据这一特性 均衡, 减小预测值与实际值的误差大小, 使预测模型的 准确率更高. 实验对比 5 种不同预测模型: 趋势预测模 型、ARIMA 预测模型、LSTM 预测模型、CNN 和 LSTM 联合预测模型和 CNN 和 LSTM 联合预测并修 正模型, 通过对比 5 种预测模型的预测准确率, 验证了CNN 和 LSTM 联合预测的可行性的同时也可以看出 加入修正模块后模型预测误差的明显降低.

2   相关模型理论 

(1) CNN 卷积神经网络 

卷积神经网络 (Convolutional Neural Networks, CNN) 是一种包含卷积操作的前馈神经网络, 基本结构 由输入层、卷积层、池化层、全连接层和输出层构成. 卷积层和池化层一般会取若干个交替设置组合使用, 卷积层中输出特征图的每个神经元与其输入进行局部 连接, 并通过对应的连接权值与局部输入进行加权求 和再加上偏置完成特征提取.

考虑到要建立模型的目的是提高预测的准确率、 减小预测值和实际值的误差值, 直接将经过预处理的 数据作为输入数据训练 LSTM 网络, 并不能将输入数 据的特征更好的融合, 只能单纯的预测出输入数据原 本特性下通过 LSTM 神经网络学习出的预测值, 准确 率和精准度不够高. 而 CNN 卷积神经网络的原理在于 通过对输入数据的卷积和池化操作, 将数据的隐藏结 构特征进行提取, 并随着网络模型复杂度的提高, 特征 提取的维度越来越高, 提取到的特征越来越抽象, 最后 将抽象特征融合在一起, 得到提取的新特征. 因此模型 先将处理的数据通过 CNN 卷积神经网络进行新特征 的提取, 提取的新特征更全面的融合了输入模块中输 入数据的特征, 并作为输入对 LSTM 模型进行学习和 训练. 能使得预测模型学习、训练的更精准, 误差更小.

(2) LSTM 长短期记忆网络 

长短期记忆网络 (Long Short-Term Memory, LSTM) 是一种时间循环神经网络, 是循环神经网络 (Recurrent Neural Network, RNN) 的优化, 循环神经网 络主要应用之一是时间序列的分析和预测, 而在电量 缺失数据预测中, 当前预测值是由与之相邻的电量值 根据变化趋势走向预测得到, 因此选择用循环神经网 络建模预测. 解决了 RNN 循环神经网络对远距离、长 周期数据遗忘问题的 LSTM 神经网络在保持其原有模 型结构的基础上, 设计隐藏层结构提高了对长序列的 分析能力. 

LSTM 神经网络的关键在于细胞状态 (cell state), 细胞状态类似于输送带, 细胞的状态在整个链上 运行, 通过设置门结构完成线性操作, 从而实现对信息 的删除和添加, 也避免了 RNN 神经网络训练过程中容 易出现的梯度消失和梯度膨胀问题, 实现更精准的预测学习. 

LSTM 的实现由 3 个门: 遗忘门, 输入门, 输出门 组成, 每个门负责是事情各不相同, 遗忘门负责决定保 留多少上一时刻的单元状态到当前时刻的单元状态; 输入门负责决定保留多少当前时刻的输入到当前时刻 的单元状态; 输出门负责决定当前时刻的单元状态有 多少输出[5] . 每个 LSTM 包含了 3 个输入, 即上时刻的 单元状态、上时刻 LSTM 的输出和当前时刻输入. ht−1 xt Wf σ LSTM 模型第 1 步是通过遗忘门从细胞状态中丢 弃无用的信息, 将前一时刻隐藏层的输出 和当前状 态的输入 连接后通过遗忘门的权重矩阵 赋权重, 通过 Sigmoid 激活函数 的计算决定有多少信息可以 通过. 公式如下:

50836295331f2e4ba18f1b7497f1e010.png

(3) 数据修正 

数据通过预测模型的预测得到预测值,  因为 LSTM 模型的预测是通过历史数据的趋势走向为预测 参照, 而在电力领域, 电量的变化并非是一直平稳, 每 天内都会有用电高峰期, 在特殊地段的特殊时刻也会 发生电量突变的情况, 比如在居民区的晚间用电量较 白天用电量来说就是用电高峰; 再比如在某一时刻, 高 铁火车的通过、天气炎热时空调的使用、工厂新设备 的投运等, 都会使得该时刻的电量突增. 此时如果单纯 使用 CNN 和 LSTM 模型根据历史数据进行预测, 也会 产生较大的预测误差, 为解决这个电力领域存在的特 殊情况, 本文提出通过对侧数据进行数据修正的方案.

在电力领域, 电力的传输都是双向的, 每一个观测 站点既接收前一个观测站点传过来的电力数据信息, 也会向下一个观测站点传递当前站点接收到的电力数 据信息. 该实验建模预测的数据是该工作站点接收到 的电量数据, 对于该数据而言, 其对侧数据是前一个观 测站点的发送出来的电量数据值. 虽然前一个观测站 点的电量数据到该工作站点的传输过程中会因为线损 等不可避免的原因导致数据的损失, 但是数据变化的走向和趋势是一致的, 可以准确的体现出该时刻数据 的变化程度, 在电量因为某些特殊情况发生电量突变 的时候, 通过该观测点对侧数据的走向和趋势可以对 CNN 和 LSTM 预测模型预测出来的数据进行数据的 修正, 提高其预测的准确性. Pt OPt 该实验研究中, 对于预测数据的修正采取均值修 正法, 将通过 CNN 和 LSTM 模型预测出来的当前时刻 的缺失数据值 和该时刻该观测点电量的对侧数据值 加和取平均作为最终的预测数据.

3   模型结构和实验 

(1) 模型结构 

根据上述模型理论, 建立 CNN 和 LSTM 联合预测 和修正模型. 总体架构图如图 1 所示. 根据缺失数据在 传输数据段中的位置, 将预测模型分为 3 种, 如图 2~ 图 4 所示: 缺失数据段在传输数据段前段时选择前向 模型预测, 既使用后一时刻的数据反向预测; 缺失数据 段在传输数据段中段时选择双向模型预测, 既前后双 向预测两个预测值并取均值作为最终的预测值; 缺失 数据段在传输数据段后段时选择后向模型预测, 既使 用前一时刻的数据正向预测.

af0ad6aa717fc976f8fe6635b91969e9.png

(2) 实验数据 

实验数据来自某电网某段时间电量数据, 电量采 集是半自动化采集, 每隔 15 分钟采集一次观测点仪器 设备值作为该观测点的电量数据, 每一天为一个传输 单元进行数据传输, 因为实验数据量过大, 文章篇幅有 限, 因此选取某一个观测点一天内部分电表数据来展 示实验数据。表 1 中为部分电量实验数据

6f2102554d9ade43c8ba7d05c431d7c2.png

(3) 实验模型对比 

实验采取了现阶段较为流行的时序预测方法进行 缺失数据预测实验, 为了更直观的体现不同预测模型 的性能好坏以及数据预测的准确性, 本文将模型预测 的平均绝对误差值作为评价指标, 通过对比不同模型 预测的平均绝对误差值的大小得出模型性能对比结果. 平均绝对误差值是所有单个观测值与算术平均值 的偏差的绝对值的平均. 平均绝对误差可以避免误差 相互抵消的问题, 因而可以通过模型的平均绝对误差来准确反映模型实际预测误差的大小. 平均绝对误差值 = ∑ 预测值−真实值 ÷样本总数 实验结果如图 5、图 6 及表 2 所示.

03b05d8b5bab22813e0956b95e58d367.png

dc87510a0cd37f6d1ea460bf6157ce30.png

方法一采用趋势预测法, 缺失数据段在传输数据 段的前段和后段时, 按已知数据的增长趋势进行直接 补齐, 完成预测; 缺失数据段在传输数据段的中段时, 直接将缺失数据的两端连接完成数据预测. 该预测方 式优点是预测方便, 但准确率是很低的, 有很大的偶然 性, 因此并不能达到精准预测的预期效果.

4   结语 

本文以解决电网传输过程中电量数据缺失问题为背景, 在 CNN 和 LSTM 联合预测的模型基础上增加了 根据电网数据特有的对侧数据作为基础参考数据的数 据修正模块, 对模型预测的数据做一定的误差校正, 通 过实验结果也验证了该方法的可行性以及修正模块的 必要性. 该方法的研究可以提高现有预测模型的模型 准确率, 其对于电力调度系统的应用有着举足轻重的 作用, 确保了传输数据段数据的完整性, 也对电网企业 里进行电力调度业务运营的智能性、准确性提供了数 据支持.

推荐书籍

0bb0927aaf725dce26898a07c0138a99.png

《SQL Server从入门到精通(第3版)》从初学者角度出发,通过通俗易懂的语言、丰富多彩的实例,详细介绍了SQL Server开发应该掌握的各方面技术。全书分为4篇共20章,包括数据库基础、SQL Server数据库环境搭建、SQL Server服务的启动与注册、创建与管理数据库、操作数据表、SQL基础、SQL函数的使用、SQL数据查询基础、SQL数据高级查询、视图的使用、存储过程、触发器、游标的使用、索引与数据完整性、SQL中的事务、维护SQL Server数据库、数据库的安全机制、Visual C SQL Server实现酒店客房管理系统、C# SQL Server实现企业人事管理系统、Java SQL Server实现学生成绩管理系统等。

本文转载《计算机系统应用》期刊 2020年第29卷第8期

b17dad4ae2aab1124147c8ef822c2e77.png

关注我们公众号,还可以获得PS AI等工具包哦~

50d77338fb5e9bd99658fc598a938a21.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值