计算机视觉
小庄头发很多
这个作者很懒,什么都没留下…
展开
-
话不多说系列——目标检测YOLO架构演变及训练细节
原创 2020-05-29 16:17:31 · 254 阅读 · 0 评论 -
Batch Normalization测试时is_training为什么要设为False
前言BN(Batch Normalization)在如今的神经网络中应用广泛,涵盖图像分类、语义分割和目标检测等各个领域,对于防止过拟合起到了巨大的作用。在TensorFlow中,使用BN时通常要设置一个参数——is_training,作为模型处在训练模式或者测试模式的标志。倘若这个参数使用不得当,就会出现推理时精度异常,会出现如下情况:①batch_size = 1时,无论输入数据是否打乱,推理精度都是极低;②batch_size 较大时,且输入数据没有打乱时,精度极低;③当batch_size较原创 2020-05-18 22:06:45 · 4246 阅读 · 0 评论 -
话不多说系列——目标检测Faster RCNN背景及训练细节
背景在Fast RCNN中,采用了Selective Search(选择性搜索)进行候选框推荐,这样的做法虽然达到了一定的效果,但是效率却十分低下,仅仅是候选框推荐就占用了整个架构80%以上的推理时间。在Faster RCNN训练细节...原创 2020-05-17 19:09:08 · 513 阅读 · 0 评论 -
深度学习数据增强方法总结
前言在计算机视觉领域中,为了提高深度神经网络模型的泛化性能,更好地适应的环境和工况,在模型的训练过程中常常会用到数据增强算法。这篇博客将总结分享现有的一些数据增强方法。增强方法适用领域Flip分类、检测、分割Rotation分类、分割Resize分类、检测、分割Croping分类、检测、分割Noise分类、检测、分割Color dis...原创 2020-05-06 20:01:56 · 3308 阅读 · 0 评论
分享