python为什么有广播机制_Numpy中的广播原则/机制

为了了解这个原则,首先我们来看一组例子:

# 数组直接对一个数进行加减乘除,产生的结果是数组中的每个元素都会加减乘除这个数。

In [12]: import numpy as np

In [13]: a = np.arange(1,13).reshape((4, 3))

In [14]: a * 2

Out[14]: array([[ 2, 4, 6],

[ 8, 10, 12],

[14, 16, 18],

[20, 22, 24]])

# 接下来我们看一下数组与数组之间的计算

In [17]: b = np.arange(12,24).reshape((4,3))

In [18]: b

Out[18]: array([[12, 13, 14],

[15, 16, 17],

[18, 19, 20],

[21, 22, 23]])

In [19]: a + b

Out[19]: array([[13, 15, 17],

[19, 21, 23],

[25, 27, 29],

[31, 33, 35]])

In [20]: c = np.array([1,2,3])

In [21]: a+c

Out[21]: array([[ 2, 4, 6],

[ 5, 7, 9],

[ 8, 10, 12],

[11, 13, 15]])

In [22]: d = np.arange(10,14).reshape((4,1))

In [23]: d

Out[23]: array([[10],

[11],

[12],

[13]])

In [24]: a + d

Out[24]: array([[11, 12, 13],

[15, 16, 17],

[19, 20, 21],

[23, 24, 25]])

# 从上面可以看出,和线性代数中不同的是,m*n列的m行的一维数组或者n列的一维数组也是可以计算的。

这是为什么呢?这里要提到numpy的广播原则:

如果两个数组的后缘维度(从末尾开始算起的维度)的轴长度相符或其中一方的长度为1,则认为它们是广播兼容的。广播会在缺失维度和(或)轴长度为1的维度上进行。

在上面的代码中,a的维度是(4,3),c的维度是(1,3);d的维度是(4,1)。所以假设有两个数组,第一个的维度是(x_1, y_1, z_1),另一个数组的维度是(x_2, y_2, z_2),要判断这两个数组能不能进行计算,可以用如下方法来判断:

if z_1 == z_2 or z_1 == 1 or z_2 == 1:

if y_1 == y_2 or y_1 == 1 or y_2 == 1:

if x_1 == x_2 or x_1 == 1 or x_2 == 1:

可以运算

else:

不可以运算

else:

不可以运算

else:

不可以运算

这里需要注意:(3,3,2)和(3,2)是可以运算的,因为对于二维数组(3,2)也可以表示为(1,3,2),套用上述的规则是完全适用的,同理:(4,2,5,4)和(2,1,4)也是可以进行运算的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值