题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
思路:
前序遍历:根→左→右
中序遍历:左→根→右
关键思想:利用前序序列根节点在前序序列中找到根节点,用根节点去中序序列划分成两部分,左部分是左子树,右部分是右子树。再利用子树长度去前序序列把前序序列中的左右子树找出来,同时可以找出根节点
根据中序遍历和前序遍历可以确定二叉树,具体过程为:
- 根据前序序列第一个结点确定根结点
- 根据根结点在中序序列中的位置分割出左右两个子序列
- 对左子树和右子树分别递归使用同样的方法继续分解
例如:
前序序列{1,2,4,7,3,5,6,8} = pre
中序序列{4,7,2,1,5,3,8,6} = in
- 根据当前前序序列的第一个结点确定根结点,为 1
- 找到 1 在中序遍历序列中的位置,为 in[3]
- 切割左右子树,则 in[3] 前面的为左子树, in[3] 后面的为右子树
- 则切割后的左子树前序序列为:{2,4,7},切割后的左子树中序序列为:{4,7,2};切割后的右子树前序序列为:{3,5,6,8},切割后的右子树中序序列为:{5,3,8,6}
- 对子树分别使用同样的方法分解
复杂度
时间复杂度:
空间复杂度:
python 实现: