计算机应用宣传,计算机文化节 | 计算机应用能力大赛宣讲会,等你来!

原标题:计算机文化节 | 计算机应用能力大赛宣讲会,等你来!

2457fe6fd45343028cd3b885b9656e1b.png

叮~

收到一份

计算机应用能力大赛的推送

请查收~

适逢秋高气爽之时,

试想去年今日

大家是否觉得

校园缺少了点什么呢?

对啦!

新 一 届

应用能力大赛

已经迫不及待地想和大家见面啦!

所有有意向的同学们请看过来!

为了让大家更好地了解大赛详情,

提前接触相关技术,

我们将隆重推出

计算机应用能力大赛——

07f35c1d84600dc0a2af1e85c02c4846.png

a220fbc61ef030e718d3863b9382fd10.png

其中更有我们的

大赛指导老师

往届获奖团队传授经验

想参加但担心技术不过关怎么办?

d910cc85bddd751155d87689e4a355d2.png

别担心

大赛指导老师和往届获奖同学正等待你们的到来

他们将为大家讲解大赛的详细流程以及赛制

还可以get到新技能哦~

欢迎他们闪亮登场!

顾振宇

信管专业老师,自2009年起指导本校学生参加全国和上海市的大学生计算机设计大赛,获得各级奖项近80项。荣获奖项和记功奖励等多次。现受聘担任上海市教育考试院高校计算机等级考试命题专家组教室,上海市大学生计算机应用能力大赛评委等工作。

5855d8ee83ad4725abff38ea1c960a93.png

25a5be44fde815d065304aee0b289233.png

宣讲人

罗 涛和 潘 雪 琪

在2018年(第十一届)中国大学生计算机设计大赛中荣获

二等奖;

在2018年(第十届)上海市大学生计算机应用能力大赛中荣获

二等奖。

获奖作品:《泥趣》

历届优秀作品展示

只要你敢想敢做敢尝试

Nothing is impossible!

佳肴·家肴

探寻文化之根

300cf5bfbf54ac25c1f4ddf14bb3cda7.png

211eed13f43cff7de01bf7a838fde8e4.png

6635634ac23a3170c1ffa4c9fa5e9fdc.png

天瓷国色

带你领略

中国瓷器之美

899e1cec92617f2a8b80a545f9b533ca.png

寻迹

没有买卖

就没有杀害

a4615745385a1685d9b15cb6cc300217.png

0e13f4024f64d96b65d62a62fa159163.png

去年现场

76cef7409ea9a9343ad8506c7d403394.png

b365bea56d3ea0350e0c436390692c17.png

10月24日 星期三

18:00 - 20:00

学思楼 B304

计算机应用能力大赛宣讲会

让我们共赴这场盛宴吧~

加入计算应用能力大赛官方群吧!

或者搜索群聊号码

群 号: 864153752

7e837cc1fb8e3709b6f7345212255e56.png

期待你的到来!

图文编辑|院学术部

图文排版|院学术部返回搜狐,查看更多

责任编辑:

内容概要:本文围绕“MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究”展开,重点利用Copula理论对多个风电场的预测误差进行时空相关性建模,旨在提高风电功率预测的准确性与可靠性。通过MATLAB实现建模过程,充分考虑风电预测误差在时间和空间维度上的统计特性与依赖结构,构建能够刻画复杂非线性相关关系的概率模型。该方法有助于提升高比例可再生能源接入背景下电力系统调度、风险评估与稳定性分析的能力,尤其适用于多风电场协同运行与预测误差不确定性管理场景。文中可能涉及边缘分布拟合、Copula函数选型、参数估计与模型验证等关键技术环节。; 适合人群:具备一定概率统计与电力系统背景知识,熟悉MATLAB编程,从事新能源预测、电力系统规划或风险管理等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多风MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究电场联合预测误差建模,提升区域风电出力预测精度;②支撑电力系统风险评估、储能配置与调度决策,增强电网对风电波动性的适应能力;③复现高水平期刊(如SCI)研究成果,推动学术研究与实际应用结合。; 阅读建议:建议读者结合文中提供的MATLAB代码深入理解Copula建模流程,重点关注边缘分布选择与Copula函数比较,同时可扩展至光伏等其他可再生能源的时空相关性建模研究。
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷序列进行分解,降低非平稳性;再通过SSA优化LSSVM的关键参数,提高预测精度;最后将处理后的各模态分量重构得到最终预测结果。该方法有效提升了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事能源预测相关工作的工程技术人员;尤其适合正在开展智能优化算法与机器学习在电力负荷预测方向研究的学者。; 使用场景及目标:①用于提升电力系统中短期负荷预测精度,支持电网调度与运行决策【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现);②为研究VMD、SSA、LSSVM等先进算法在时间序列预测中的融合应用提供可复现的技术方案与代码参考;③作为SCI论文复现或科研项目开发的基础模型框架。; 阅读建议:建议读者结合文中涉及的信号分解、智能优化与机器学习理论,逐步调试Matlab代码,理解每一步的数据处理与参数优化逻辑,并尝试在不同数据集上验证模型性能,进一步拓展至风电、光伏等可再生能源出力预测领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值