切比雪夫不等式例题讲解_【初一】含字母参数的一元一次不等式(组)的解题技巧...

本文详细介绍了含参数不等式的解题策略,包括常数项含参、系数含参以及特殊解的情况。关键步骤包括视参数为常数、分类讨论参数正负、结合数轴确定解集,并强调了解集表示的符号规则。通过实例解析,总结了解题方法,有助于提升对不等式解法的理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知 识 储 备

9edef5d0ac7785b2c7aad3a21c106186.png

牢记不等式性质3,注意变号.

c2b89975f41c46e58bde346cb669b0e9.png
eef90b66adebe171786c09d20afb1057.png

(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.

(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.

例 题 讲 解

8386249857992c0132b04653f895b925.png
ddcb5a7de94173234f5c1d750d51ac48.png
ac941c2d989368f94a96972c62bc6d98.png
7bc675a70a05c6d835ecefdc12fd8c67.png
661c419c6b38f519080fcf5c2be3d7c4.png
bb561db08d9539f640cb6d6470400d66.png
fcee70117cd94eff3769890efb9b3923.png
afec08396526dfa50a6a4e094b473347.png
6f49abaac7b6400cebb6bf4a9de96af8.png
82400478806e6cf45e08212dc695b39a.png

方法小结

1.常数项含参不等式:只需要把字母参数看成已知数,用参数来表示不等式解集,再结合条件确定参数的值.

2.系数含参不等式:通过分类讨论参数的正负,利用不等式的性质三求出不等式的解集,再结合条件确定参数的取值范围。

3.含参数不等式(组)(尤其一些特殊解,比如:无解,有解,有几整数解)的解法:先求不等式(组)的解集,再结合数轴把参数解集看成数轴上的动点来确定参数的值范围,要注意临界值的确定。

4.含参数方程(组)和不等式:先把方程(组)的解用参数表示,再与不等式的解集进行对应起来,构造新的等式,求出参数的取值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值