python 路径规划最短距离_动态规划 ------最短路径问题

本文通过实例介绍如何使用动态规划求解从起点S到终点T的最短路径。讲解了动态规划的思路、子问题界定、依赖关系以及优化原则,并提供了一个反例解释了不满足优化原则时的问题。最后,给出了简化版本的代码实现。
摘要由CSDN通过智能技术生成

最短路径问题是 动态规划的一个实例。

1.最短路径问题的描述

2.举个例子来说明:

求从 S 到 T 的最短路径。

3.思考方式

4.利用动态规划求解问题

依次 考虑从 C 到 T 的最短距离。

考虑从 B 到 C 的最短距离

考虑从 A  到 B 的最短距离

考虑从 T 到 A 的最短距离

每次都是最短距离。

在整个过程中,我们把 我们的目标问题转化成了一个个的子问题,在子问题 求 最小值,最后解决了这个问题。

4.子问题的界定

5.最短路程之间的依赖关系

每一次计算的时候都是依据前一个子问题。不需要一个一个计算。每次计算都可以直接利用前一个问题的解。

6.子问题的优化原则

6.利用动态规划求解是需要条件的,一个反例告诉你,动态规划求解的条件

分析: 假如从S 到 T 经过的节点依次是 A B C ,从C 到 T ,模10,我们选择 上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值