直角三角形的边角关系_解题分享圆背景下——边角关系的整合与转化

圆背景下——边角关系的整合与转化

——2020年杭州市中考数学试题第23题

01

原题呈现

fc60be68e2aea62b289891aab5f088f7.png

02

解法分享

3e5f7572eb9c579d932a2d0af336c382.png

5afe593bddb964f7244a57e214b83f10.png

68cc5e24fd911e20d96726c3fce88aaf.png

79c54af9bc7174fbbbe0f5dfd77a3662.png

d7c1645ff66d9edfcb1083f0cce8a462.png

8900c1774a7a65cb0c7031b3e6d0f57e.png

2314d614384133c95dc75fba36543b07.png

74c613cc8c6446998608c0e2e53ddd00.png

333c4e5344f8e4fe17afc1f1c0ad3f51.png

a62ef6c03d99b44764c1d78944b119b7.png

8c460a68cf08b1a35145ca80e643ac83.png

5f54d214985b72e92edd7857d29e14d9.png

72f6e315d0603c2b1112addc5c02638f.png

c41a38cb80e48f98c90d73d1f72ffa1e.png

09987ec2246571f1c14663078b3b163b.png

0f5f93b65d45b99debe00a3b51e2054e.png

35a6c54d5aa2c4ccf1d6555361470476.png

2579f8be4c4417d12df25bd7e975259a.png

f85a71e20a0da66ac016c6bbdc2ace19.png

6f70a4ded85f33c75aecf3c70f720cbb.png

519376be7b0c184bc4a3043a00d91b34.png

a19a4d89b30908c0866f02208135b680.png

44630afb5a62246f5727846d5e97c8ab.png

8397aa466389bbe61f1a6d0ec410065a.png

be757f6281fc482881081820ee28acf0.png

c728ccc71d3d29b2d0ceee125af4f771.png

1d4e84793fcf90131506cfebf54fe1d7.png

a83cb70bdfc3da96ebf1a1c75f9fd404.png

da07ad6bf2ae690e45c3678bcd8ad453.png

99420805d44a4b4939dce020ccde3ff0.png

a0a8a7212d78d312d9957ca24b24d706.png

2deb9b131bd48e8ce05b60fcc2a04200.png

1febcff48c4b6d9dbda6c3ded23afbc0.png

658cc4d7c4dc4fe32f444c7145e42569.png

9243541d9538be1398244b1d8a251c46.png

a60ef967402c665cefc6ec18591a29f1.png

47466433c3e142529d3752ecf5f5c351.png

03

考点分析

     本题为圆的综合题,侧重考查几何图形的本质属性,注重考查教材基本图形。本题条件内涵丰富,有圆,双中点,垂直,特殊角等知识点。

第(1)题考点主要是解直角三角形,垂径定理,直角三角形斜中线定理。

第(2)题的第①问相似三角形的性质与判定,全等三角形性质与判定。

第(2)题的第②问等腰三角形的性质,等腰直角三角形的判定,同时也考查了学生的作图能力。

04

解法提炼

  (1)在圆的背景下,由“中点”、“垂直”的特殊位置以及特殊角度,学生不难从题中发现课本学习中一些常见的基本图形。解题的关键是将已知的边角关系有效集中到含所求线段EF的特殊三角形之中,求解线段长度的通法有解直角三角形、勾股定理等。

    (2)①证明线段相等,最基本的方法是寻找 全等三角形,但此题在不添加辅助线的情况下没有现成的全等三角形。此时,我们可以执果索因,从结论出发,不妨思考证明两线段相等的方法有哪些?主要有构造全等三角形、等腰三角形等角对等边、平行四边形对角线互相平分、证明三角形的中线、相似三角形对应边成比例、平行线分线段成比例、等量代换、解析几何等。在平行线分线段的基本图形中,学生可以过图中任意分点作任意一条线段的平行线,利用线段之间的比例关系证明线段相等。也可由图中的“双中点”自然地可以使学生联想到中位线模型,从而巧妙构造平行四边形求证。由于学生添辅助线构图的能力较弱,要在较短时间从复杂图形中发现基本图形并加以证明,需要有较强的几何构造、逻辑推理与计算能力,故此题有较好的区分度。

   (2)②考查尺规作图及成轴对称的基本图形的性质。在画出标准图后进行观察、分析、猜想,通过合情推理及演绎证明不难发现线段DF与FB相等。由轴对称性可知矩形DABC是正方形,这也是浙教版教科书八下“5.3 正方形”中的例题。由圆的旋转不变性或是等腰三角形的轴对称性均能从图上直观得出△AOB是等腰直角三角形。几何条件坐标化建立直角坐标系也是突破“数”与“形”的有效模型,以数解形,从而准确求解。

05

解法反思

       本题是圆的综合题,考查特殊三角形(直角三角形和等腰三角形)的判定和性质,相似三角形的判定和性质,平行线分线段基本模型,平行四边形判定和性质等。如何有效利用已知条件添加辅助线,构造特殊三角形,相似三角形等是本题解题关键。本题解法多样,解题思路较为灵活。

       第(1)问中30°特殊角是一个很好的提示,可以将学生的思维引向添加辅助线构造直角三角形或找到等腰三角形。在特殊三角形中求线段长度方法较多,斜中线定理、勾股定理或在等边三角形或等腰三角形得到线段关系是较常用的求线段方法。

       第(2)问中的第①小问求证PE=PF可以从相似三角形,平行线分线段基本模型等角度入手,借助AE=EB、 AO=OC=2OF、OF=FC线段等量关系中的一个,添加平行线得到相似三角形,进而求出相关线段的数量关系。此外,构造平行四边形(利用对角线互相平分性质)及面积法也是求线段相等的方法之一,对平行四边形性质及面积法熟练掌握有一定要求。本小题对该类题型的解题反思可以由下图展开。

2fe9a0a12819a5c102ca482cd6f42888.png

       此题解法较多,尤其是当把PE、PF视为两个不同三角形中的两线段,通过转化为比来证明线段相等时,可以有多种辅助线的添加方法,但本质上都是通过添加平行线转化,利用基础的“A”型相似或者“8”型相似解决。

       第(2)问的第②小问求∠BAC的度数,难度稍大,但第①小问的思路和方法为第②小问起到了过渡作用,过点F作FG⊥AB,再利用平行线分线段成比例得到G为EB中点,从而得到EF与BF相等,等量代换得出△DFB是等腰三角形,从而得到∠AOB的度数和∠BAC的度数。由此可以发现解决本题的关键还是在于F为OC中点的转化,关联平行线分线段,等腰三角形的判定与性质,等腰直角三角形的判定。

      总结:本题虽是以圆为背景的综合题,但是亮点在于第二题的第一小问即使不用圆背景也可以解决问题,更为重要的是从复杂图形中抽离出基本图形,将一个复杂图形中的基本图形“离析”出来,是解决问题必须具备的重要能力之一,而这种“离析”是需要在真正理解基本图形的基础上才能进行的。这就需要教师在教学前必须做好大量的工作,充分备好每一节课,在教学过程中,要带领学生由浅入深、循序渐进地学习,同时引导学生探究证明问题的基本思路,不断归纳解题方法。

06

变式训练

235d31ef960a01d5727b56fdd09f6c61.png

793cb88841650592785b69502bb06145.png

0c7a3b5c7ae7fce6782dbc3a7e69df94.png

0d838c44ec1108c7a425ef7aa6632cd3.png

07

本期鸣谢

35dd642a32305af0bb5fd303c87a9d91.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值