计算机辅助专题地图,第九章几种主要类型专题地图的编制 《专题地图编制》——色彩设计、编制的基本方法、特点和计算机辅助专题地图制图.ppt...

文档介绍:

第九章几种主要类型专题地图的编制特点

1

主要内容:

1.自然地图编制

2.人文地图编制

3.经济地图编制

4.统计分析与评价地图

5.几种专用地图的编制

2

第一节地势图、地质图、地貌图的编制

一、地势图

地势图是以表示区域的地貌特征为主的自然地图,通常以等高线加分层设色的方法表示,因此与一般的地形图相比,它能更为显明地反映地貌的类型和形态特征。在图上应详细表示与地貌有密切关系的水系。

分层设色地势图通常是小于1:100万比例尺的地图。大于1:100万的县或地区的分层设色地势图,从其等高线的表达及综合程度看,其实质还属于地形图的范畴。地势图可看做是普通地图与专题地图的过渡类型。

3

分层设色地势图对地貌显示的要求是:

(1)应该显示出地表面大的地貌形态及轮廓形状,绝对高程与相对高程,斜坡的特征、以及切割的类型、特点和程度等。当图上未设分层设色时,也应能明显地看出地貌形态的结构特征、延伸方向、倾斜度、水文线和集水线。能近似决定相对高程(最高点与最低点的高差)。

(2)显示地貌应有的地理相似性,即在图上应该保持与大型地貌形态的构造和成因有关的图形特征。在等高线图形化简时,在保证地貌形态结构的原则下,对次要的细小碎部可作较大的概括。

(3)地貌的高程与平面精度,应与地图比例尺和用途相适应。地势图质量的好坏,决定于等高距的选择、等高线图形的概括程度和分层设色的选择。采用相等的等高距,能够精确而明显地显示地貌,尤其在较小区域内的较大比例尺图上,用相等的等高距更为适宜。

4

地貌等高线等高距表的确定受到地图用途、比例尺和资料的影响,要选择恰当的等高线等高距表,通常须按以下工作步骤进行:

(1)区分不同地貌类型的区域。

(2)在每个区域内选择有代表性的地区。

(3)在每个代表性地区内作剖面图,标出该区的地形变化点,并计算极限性的和占优势的倾斜角值。

(4)对每个代表性区域,研究等高线近于合并的地段和等高线间距较近的地段,据此选择各类地貌合适的等高线等高距。

(5)把各个区域的等高线间距表合并为一个统一的等高距表。这里要保证等高线间距是逐渐增大的,并且包括了特征等高线与常用的等高线。

(6)最后,研究各区域是否都适用这统一的等高线等高距表,若不适用,则需在编绘时考虑补充某几条对全区特征有意义的等高线,与此同时,舍去与补充等高线邻近的那几条等高线。

5

6

7

二、地质图

8

三、地貌图

9

10

内容来自淘豆网www.taodocs.com转载请标明出处.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
<h3>回答1:</h3><br/>计算机辅助几何设计是指利用计算机技术来辅助进行几何设计的过程。非均匀有理B样条是一种用于曲线和曲面设计的数学工具,它可以用来描述复杂的几何形状。在计算机辅助几何设计中,非均匀有理B样条被广泛应用,因为它具有灵活性、精度高、计算速度快等优点。通过使用非均匀有理B样条,设计师可以轻松地创建出各种形状的曲线和曲面,从而实现更加精确和高效的几何设计。 <h3>回答2:</h3><br/>计算机辅助几何设计是指通过计算机技术来辅助实现各种几何形状的设计和绘制工作。非均匀有理B样条是计算机辅助几何设计中的一种重要的参数曲线表示方法,常用于三维图形的建模和设计。 非均匀有理B样条是通过一组基函数来描述曲线的方法。其基本思想是将曲线段分成若干个小段,每个小段用一个B样条函数来描述。这些B样条函数是由一些基函数通过控制点的线性组合得到的。因为B样条函数的定义域是有限的,所以通常需要对多段B样条进行拼接来描述曲线。 非均匀有理B样条在描述曲线形状时有很大的灵活性和准确性,能够很好地实现曲线的平滑和变形等效果。此外,非均匀有理B样条还可以通过调整控制点的位置和权重来实现曲线的调整和变形。因此,非均匀有理B样条在工程设计、建筑设计、汽车造型等领域中得到了广泛的应用。 在计算机辅助几何设计中,非均匀有理B样条不仅可以用于描述曲线,还可以用于描述复杂的曲面形状。在三维建模中,通过对非均匀有理B样条控制点的调整,可以实现模型的自由变形和细节调整,较好地解决了传统建模方式下模型难以细致描述和调整的问题。 总之,非均匀有理B样条是计算机辅助几何设计中一种重要的参数曲线表示方法,通过其实现了曲线的精确描述和自由变形。随着计算机技术的不断发展,非均匀有理B样条的应用也在不断拓展。 <h3>回答3:</h3><br/>计算机辅助几何设计 (Computer Aided Geometric Design,简称CAGD) 是一门涵盖计算机科学、数学和工程学的学科,它使用计算机的功能来帮助进行几何设计和分析。在CAGD中,通过数学方法和计算机算法来创建和变换几何形状,可以应用于多领域,如航空、汽车、建筑、动画等等。 而非均匀有理B样条(Non-Uniform Rational B-Splines,简称NURBS)是CAGD中非常重要的一个概念。NURBS是曲线和曲面的数学表示方法之一,它以控制点和节点矢量作为输入,通过计算生成一条光滑的曲线或曲面。相比于传统的贝塞尔曲线和B样条,NURBS更适合对光滑曲线和曲面的描述和处理,能够快速、精确地生成高质量的几何形状。 在CAGD领域中,NURBS的应用可谓是无所不在。尤其是在汽车、船舶、飞机等复杂形状的设计和制造中,NURBS的应用更是不可或缺的。此外,在建筑、医学、地质等领域中也有广泛应用。 CAGD和NURBS的发展也与数学和计算机技术的不断进步密不可分。近年来,随着人工智能、云计算、大数据等技术的崛起,CAGD和NURBS也被赋予更广泛的应用场景和更高的研究价值。可以预见,CAGD和NURBS的未来发展必将迈上更高的台阶。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值