净误差与遗漏为负值的含义_时域分析——有量纲特征值含义一网打尽

aa2889c1bff1c20ff5cf6d3e16417256.png

在之前的文章(Mr.括号:信号时域分析方法的理解(峰值因子、脉冲因子、裕度因子、峭度因子、波形因子和偏度等))里对时域指标做过一些分析。最近由于新建立一个公众号(括号的城堡)将会对以前讲过的内容进行系统的梳理。内容将在公众号首发,欢迎大家关注。

时域特征值是衡量信号特征的重要指标,时域特征值通常分为有量纲参数与无量纲参数。

所谓“量纲”,简单地理解就是“单位”。有量纲的参数就是有单位的,比如平均值,一段温度信号(单位℃)的平均值依旧是℃;无量纲的参数没有单位,无量纲量常写作两个有量纲量之积或比,但其最终的纲量互相消除后会得出无量纲量,比如,应变是量度形变的量,定义为长度差与原先长度之比。

有量纲的特征值往往具有直观的物理含义,是最为常用的特征指标。有量纲特征值主要包括:最大值、最小值、峰峰值、均值、方差、标准差、均方值、均方根值(RMS)、均方误差(MSE)、均方根误差(RMSE)、方根幅值等。

1.均值

均值、方差、均方值、均方根值之间有内在的联系。

均值是信号的平均,是一阶矩,可以表示为:

767ccf1f7f081aeb476d060faa9efe00.png

2.均方值

均方值是信号的平方的平均(信号→平方→平均值),代表了信号的能量,是二阶矩,可以表示为:

6f7694ceb8d428346f952d8ce2a8e531.png

3.方差

方差是每个样本值与全体样本值的平均数之差的平方值的平均数,代表了信号能量的动态分量(均值的平方是静态分量),反应数据间的离散程度,是二阶中心距,可以表示为:

9d61c7a8c0cb02997d3e703d878722c4.png

方差的不同表达方式,可以看出方差的几种理解方式:

(1)

1873273ab15413d9dda1e6a7c227e006.png

式中可以看出:方差描述的是信号的离散程度,也就是变量离其期望值的距离。

(2)

d24aaf26d7c0a426daefd212a329640d.png

式中可以看出:方差即平方的期望(均方值)减掉期望的平方。

(3)从物理含义上讲,均方值代表信号的能量,期望的平方代表信号的直流分量,而方差代表信号的交流分量。

4.标准差

标准差又叫均方差,是方差的算数平方根。标准差反应的是数据的离散程度

问题来了,方差和标准差都表示数据的离散程度,那么既然有了方差,为什么还要有标准差呢?

为了和原始信号统一量纲。

举个例子,假设北京一年的平均气温是20℃,气温标准差是10℃;乌鲁木齐一年的平均气温是20℃,气温标准差是15℃。这样会对气温的离散程度有一个直观理解,但如果说北京的气温方差是100,乌鲁木齐是225,就很不方便理解了。

5.均方根

均方根(RMS)又叫有效值。将所有值平方求和,求其均值,再开平方,就得到均方根值。或者说均方根值等于均方值的算数平方根。

ea2bbb3361ca5a4e21970a7aae92b87a.png

其物理含义可以这样理解:让交流电与直流电分别通过同一电阻,若两者在相同的时间内所消耗的电能相等(或产生的焦耳热相同),那么该直流电的数值就叫做交流电的有效值。

6.均方误差

均方误差(MSE)是某种意义上的方差,均方误差是指参数估计值与参数真值之差平方的数学期望值。如果我们把随机变量的数学期望E认为是参数估计值(未来的),把随机变量本身作为参数真值,那么均方误差就是普通方差。

3f382dc1a82a6acc4dc7a0593d86e219.png

均方误差MSE可以评价数据的变化(偏离)程度,MSE的值越小(相互之间的比较,而不是跟参数真值的比较),说明预测模型描述实验数据具有更好的精确度。

均方误差在机器学习中常作为一种误差量度。

7.均方根误差

均方根误差(RMSE)就是均方误差的算术平方根:

b881a0887c6f0a154f845102f8db0e12.png

均方误差与均方根误差,正如方差与标准差一样,是量纲上的区别,应用不同场合。

总结

5f232c60c741777789be8e4f4381275a.png

欢迎批评指正!

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页