神经网络——多层感知机

@(Aaron)[机器学习 | 多层感知机]

主要内容包括:

  • 多层感知机的基本知识
  • 使用多层感知机图像分类的从零开始的实现
  • 使用pytorch的简洁实现

多层感知机的基本知识

  深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。

  多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:

H = ϕ ( X W h + b h ) O = H W o + b o \begin{array}{l} {\boldsymbol{H}=\phi\left(\boldsymbol{X} \boldsymbol{W}_{h}+\boldsymbol{b}_{h}\right)} \\ {\boldsymbol{O}=\boldsymbol{H} \boldsymbol{W}_{o}+\boldsymbol{b}_{o}} \end{array} H=ϕ(XWh+bh)O=HWo+bo

  其中 ϕ \phi ϕ表示激活函数。

隐藏层

  下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。
在这里插入图片描述

表达公式

  具体来说,给定一个小批量样本 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} XRn×d,其批量大小为 n n n,输入个数为 d d d 。假设多层感知机只有一个隐藏层,其中隐藏单元个数为 h h h 。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为 H H H,有 H ∈ R n × h \boldsymbol{H} \in \mathbb{R}^{n \times h} HRn×h。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为 W h ∈ R d × h \boldsymbol{W}_{h} \in \mathbb{R}^{d \times h} WhRd×h b h ∈ R 1 × h \boldsymbol{b}_{h} \in \mathbb{R}^{1 \times h} bhR1×h,输出层的权重和偏差参数分别为 W o ∈ R h × q \boldsymbol{W}_{o} \in \mathbb{R}^{h \times q} WoRh×q b o ∈ R 1 × q \boldsymbol{b}_{o} \in \mathbb{R}^{1 \times q} boR1×q

  我们先来看一种含单隐藏层的多层感知机的设计。其输出 O ∈ R n × q \boldsymbol{O} \in \mathbb{R}^{n \times q} ORn×q的计算为

H = X W h + b h O = H W o + b o \begin{array}{l} {\boldsymbol{H}=\boldsymbol{X} \boldsymbol{W}_{h}+\boldsymbol{b}_{h}} \\ {\boldsymbol{O}=\boldsymbol{H} \boldsymbol{W}_{o}+\boldsymbol{b}_{o}} \end{array} H=XWh+bhO=HWo+bo

  也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到

O = ( X W h + b h ) W o + b o = X W h W o + b h W o + b o \boldsymbol{O}=\left(\boldsymbol{X} \boldsymbol{W}_{h}+\boldsymbol{b}_{h}\right) \boldsymbol{W}_{o}+\boldsymbol{b}_{o}=\boldsymbol{X} \boldsymbol{W}_{h} \boldsymbol{W}_{o}+\boldsymbol{b}_{h} \boldsymbol{W}_{o}+\boldsymbol{b}_{o} O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo

  从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为 W h W o \boldsymbol{W}_{h} \boldsymbol{W}_{o} WhWo,偏差参数为 b h W o + b o b_{h} W_{o}+b_{o} bhWo+bo。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。

激活函数

  上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。

  下面我们介绍几个常用的激活函数:

ReLU函数

  ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素,该函数定义为

ReLU ⁡ ( x ) = max ⁡ ( x , 0 ) \operatorname{ReLU}(x)=\max (x, 0) ReLU(x)=max(x,0)

  可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。

%matplotlib inline
import torch
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
def xyplot(x_vals, y_vals, name):
    # d2l.set_figsize(figsize=(5, 2.5))
    plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())
    plt.xlabel('x')
    plt.ylabel(name + '(x)')
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.relu()
xyplot(x, y, 'relu')

在这里插入图片描述

y.sum().backward()
xyplot(x, x.grad, 'grad of relu')

在这里插入图片描述

Sigmoid函数
  sigmoid函数可以将元素的值变换到0和1之间:

sigmoid ⁡ ( x ) = 1 1 + exp ⁡ ( − x ) \operatorname{sigmoid}(x)=\frac{1}{1+\exp (-x)} sigmoid(x)=1+exp(x)1

y = x.sigmoid()
xyplot(x, y, 'sigmoid')

在这里插入图片描述

  依据链式法则,sigmoid函数的导数

 sigmoid ′ ( x ) = sigmoid ⁡ ( x ) ( 1 − sigmoid ⁡ ( x ) ) \text { sigmoid}^{\prime}(x)=\operatorname{sigmoid}(x)(1-\operatorname{sigmoid}(x))  sigmoid(x)=sigmoid(x)(1sigmoid(x))
  下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。

x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of sigmoid')

在这里插入图片描述

tanh函数

  tanh(双曲正切)函数可以将元素的值变换到-1和1之间:

tanh ⁡ ( x ) = 1 − exp ⁡ ( − 2 x ) 1 + exp ⁡ ( − 2 x ) \tanh (x)=\frac{1-\exp (-2 x)}{1+\exp (-2 x)} tanh(x)=1+exp(2x)1exp(2x)

  我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。

y = x.tanh()
xyplot(x, y, 'tanh')

在这里插入图片描述
  依据链式法则,tanh函数的导数

tanh ⁡ ′ ( x ) = 1 − tanh ⁡ 2 ( x ) \tanh ^{\prime}(x)=1-\tanh ^{2}(x) tanh(x)=1tanh2(x)

  下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。

x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of tanh')

在这里插入图片描述

关于激活函数的选择

  ReLu函数是一个通用的激活函数,目前在大多数情况下使用。但是,ReLU函数只能在隐藏层中使用。用于分类器时,sigmoid函数及其组合通常效果更好。由于梯度消失问题,有时要避免使用sigmoid和tanh函数。在神经网络层数较多的时候,最好使用ReLu函数,ReLu函数比较简单计算量少,而sigmoid和tanh函数计算量大很多。在选择激活函数的时候可以先选用ReLu函数如果效果不理想可以尝试其他激活函数。

图像分类数据集(Fashion-MNIST)

  Fashion-MNIST是一个多类图像分类数据集。它将在后面被多次使用,以方便我们观察比较算法之间在模型精度和计算效率上的区别。图像分类数据集中最常用的是手写数字识别数据集MNIST[1]。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST[2]。

使用多层感知机图像分类的从零开始的实现及pytorch重新实现

参考:https://github.com/Sandy1230/Dive-into-DL-PyTorch-master

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值