机会成本
之前写了自己如何从自动化领域转行到金融领域,后台很多朋友私信问自己的背景适不适合转行做量化,或者是如果想做量化需要做什么准备,虽然简单的回答了一些,但是由于平时工作和学习实在太忙,难免相对简略了些。个人觉得,如果选择从事量化或者转行从事量化领域的职业,首先需要了解这个领域有哪些岗位,不同岗位的工作内容是什么,以及这些岗位的招聘要求是什么?再结合自身的兴趣爱好、从业背景等实际的情况进行分析,决定要不要从事或者转行做量化,毕竟,无论是第一份工作的选择还是转行,都要付出很大的机会成本。
不同的岗位
无论是从证券、私募、银行、期货和外资金融与量化金融相关的工作来看,还是从实际的求职招聘网上的信息来看,目前主流和量化相关的岗位主要包括三个:量化研究(分析)、量化交易和量化开发。个人认为这也相对符合逻辑,整体上来说,研究和分析部门可以研究和制定量化交易的策略,开发部门负责算法策略的程序化,以及相关的订单数据的优化;交易部门负责策略的实施,分析损益。当然,实际的工作模式或许会有区别,比如,我从事的量化工作实际上是没有对应专门的研究部门,交易部门直接和量化开发部门对接工作,反馈交易系统和算法的计算结果出现的问题,但是,现在也招聘很多的金融工程领域的人才进行订单和算法执行的数据分析相关的工作。
下面结合自身的经验和LinkedIn上针对上述三个岗位主要工作内容和岗位要求,“扒一扒”这些岗位到底是做什么以及如果想从事这些岗位我们需要具备什么样的技能,希望能对您由所帮助,不妥或者不全面的地方,希望读者谅解并留言指正。
葵花宝典创始人:量化研究员/分析师
量化研究的主要是通过大量的数据分析,发现市场中间隐藏的交易信号,以此来制定交易策略,预测市场的走向,或者是通过对市场数据进行量化分析,建立策略。
主要工作:处理和分析数据,发现市场中隐藏的能作为交易信号的信息,预测未来的市场的走势。
通过量化分析制定交易策略和市场模型。
改善现有交易策略或者制定新的交易策略。
岗位要求:
一般量化研究和分析的岗位要求比较高,尤其是对学校背景,一般情况下,学历一般是硕士或者PHD,统计,数学,金融工程专业都有一定的优势。下面是我从LinkedIn上面找的一份量化研究岗位的要求,供大家参考:Masters or PhD in a quantitative discipline e.g. Statistics, Physics, Mathematics, Signal Processing, Machine Learning, etc
5+ years experience in analysing real world data in a first class research environment.
3+ years of financial markets experience working directly with trading desks
Excellent communication skills
Good command of spoken and written English
量化研究的岗位相对于量化开发和量化交易而言,可能需要更多的金融知识作为背景,毕竟研究和分析金融产品,以及对策略进行建模的话,多数情况下需要对市场中的交易产品非常熟悉,知道如何定价,如何把控风险,而且如果需要做出盈利的策略,也许需要研究员足够的smart.针对量化研究,这里有一点需要提醒大家:可能是之前各种媒体对研究的岗位的宣传力度比较大,比如新财富排行榜,各种财经类节目或者金融公司的宣传,都是某人来自xxx研究所等等,听到研究和分析这些字眼,大多数都和学术和专业挂勾,现实中,金融领域公司的研究岗位也许并没有大家想象的那么”高大上“,一是公司更在意实际价值,能为公司创造和带来价值的员工,在实际的工作中地位会相对高一些;二是研究和实际的投资也许相差甚远,实际的投资时,可能因为各种因素无法实现研究策略,导致研究的价值并没有想象中的那么大,当然,本人十分佩服那些真正在一个行业耕耘,做学术研究的导师们。因为很多的朋友后台私信,基本上都是说自己想做量化研究或者量化分析,这里阐述一下自己不成熟的观点,还希望大家自我斟酌,多加思考,不要被各种”title“误导。
金融界的码农:量化开发工程师
本人目前就是一名量化开发工程师,虽然实名“工程师”,实际工作就是每天看交易代码,写交易代码,看交易算法,写交易方法工具的一名金融界的码农,不过说句题外话,读了一些金融著作,还挺喜欢这份工作的,每天可以看到量化交易背后的逻辑框架,策略和算法的实现的过程,学习如何解决一个个高频和算法交易过程中出现的问题,还是挺有成就感的一件事情。那么作为一名量化开发人员主要的工作主要包括三个方面:
主要工作:量化交易系统和工具的开发
协助交易团队,收集前台quant团队的需求,完成相应的开发工作
交易系统日常的数据分析和订单数据的统计分析
下面是我从LinkedIn里面选取的的Quantitative Developer日常的主要工作的描述,应该相对比较全面Implement tools for performing statistical analysis and algorithmic trading
Collaborate with Trading & Quant teams to gather system requirements when necessary
Provide technical support for trading system
Very strong skills in writing production code in an OO programming language (prefer C++), and a statistical language (prefer Python), with understanding of software development workflows required
岗位要求:
从日常工作的内容中,可以看出来编程技能对于量化开发人员来说非常重要,除了要会能用于数据统计的编程语言,如R、python、MATLAB之外,通常还需要用到C++、Java等面向对象的编程;统计语言会一门基本可以满足需求,底层语言根据不同的公司要求可能不同,大多数还是以C++为主;除了编程技能之外,数学和统计的基本知识也是量化开发人员必不可少的,因为常常需要实现不同的算法,订单优化等等,金融基础知识的储备量相比于量化开发人员要求可能会低一点。Experience in C++ on Linux (network socket programming and Linux kernel knowledge a plus but not essential)
Fluency in programming fundamentals and mathematical techniques
Solid knowledge of Interest Rates Structured products (Caps/Floor, Swaption, Range, Bermudan options, etc.)
Experience with relevant Python libraries: sciPy, numpy, pandas, ,etc.
挥剑人:量化交易员
无论是研究还是开发最后都需要落到实处,那么量化交易员就是实际的挥剑人,很多的量化研究和量化开发都是来支持交易创造价值的,实际市场中,薪酬最高的也许不是研究人员,而是天赋异禀的交易员,之前和几位朋友聚餐,听说了交易员的工资,完全突破了个人认知,真的是”没有做不到,只有想不到“。
市场中量化交易员可以分为两种:一种是策略执行者,他们可能需要根据市场的实际情况对模型和参数进行细微的调整,但是不会改变整个策略的逻辑,另外一种就是前面所述的那些”天才“交易员,无论是量化研究和量化开发,都是为了满足这些交易员的需求。比如:交易员想知道订单为什么没有成交,为什么计算的结果和实际不一致,那么开发人员就需要查询背后的程序算法;如果交易员需要对市场数据进行统计分析,研究人员或许就需要进行相应的分析。其实,无论两种交易员的哪一种,在公司的地位都不低,毕竟直接和金钱挂钩。
主要工作:市场衍生品的做市商,根据买卖价差赚取收益
分析交易数据,提高策略和模型的收益
开发、维护的增强现有交易算法
下面是LinkedIn上对交易员招聘的要求,仅供参考:Make markets in designated derivatives. Target will be to eventually take ownership of the trading revenue in the designated markets.
Analyze trading data for potential improvements to the strategy and infrastructure
Develop, maintain and enhance trading models and algorithms
其实说了这么多的主要工作内容,其实其核心就是一点:make money.
岗位要求:
相较于前两者,交易员的岗位要求其实更加感性一些,比如需要对交易的浓厚的兴趣,具备较强的抗压能力,或者敏锐的市场嗅觉等等,金融知识和编程技能都可以通过学习获得,但是兴趣、市场的敏锐性这种并不好量化。
有趣的是,很多招聘交易员的岗位,对于学历和学术背景并没有那么高,比如下面招聘交易员岗位的要求是本科及以上,数学和物理专业在交易员岗位上也具备一定的竞争优势。Bachelor's or higher degree in a quantitative or technical field (mathematics, engineering, econometrics, physics, statistics, etc.)
Excellent quantitative and logical reasoning skills with a knack for problem solving
Programming experience
Ability to work in competitive and fast-paced work environment
少有人走的路
无论是做量化研究、开发和交易都需要金融,数学和编程的基础知识,虽然不同的岗位和方向对三者的要求高低不同,但是都是必不可少的从业技能,所以我们可以对薄弱的方面,有针对性的进行一些学习和训练,先将自己的知识和技能补全。
其次,兴趣非常重要,我个人觉得热爱是一个人能长期从事某一份职业的根本动力,也很可能让一个人在某一个领域实现快速成长甚至有所建树。因此,无论研究、开发还是交易,我个人看来并没有高低之分,更没有所谓的”鄙视链“,找到适合和自己的喜欢的职位很重要。
很多的时候,我都告诫自己,问自己希望自己成为什么样的人,而不是别人希望我成为什么样的人,活成自己喜欢的样子,会让生活更加有意义。
本文解析量化金融领域的三大岗位:量化研究、量化开发与量化交易,介绍各岗位职责及技能要求,帮助读者理解不同角色的工作内容及其所需的专业背景。
2922

被折叠的 条评论
为什么被折叠?



