matlab cftool代码_强大的matlab数据科学拟合库cftool——直接导入数据进行拟合

33d80faa8c40c97a17e09baeebcbfdea.gif

ce7d25040dbdfdb7a89f977e40563ebb.png

(转载作者请注明出处)

废话不多说,直接上货....

9da960e6da20df7e81fa1465d60017ef.png

89e1ac8d10f0951b93eef25e01e25887.png

对于使用过matlab做数据处理的人来说,拟合是将平面上一系列的点,用一条光滑的曲线连接起来。因为这条曲线有无数种可能,从而有各种拟合方法。拟合的曲线一般可以用函数表示,根据这个函数的不同有不同的拟合名字。

数据拟合又称曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合(fitting)
介绍的引用来源:百度

一、安装cftool

cftool(Curve Fitting Toolbox™)工具箱主要是针对数据拟合的。使用起来特别的强大,尤其对于数据的处理超级方便,可以直接对于数据拟合,并且可以预设各种的拟合方案。这里注意的是非线性的也可以进行拟合,例如:幂律,高斯等等。

更详细的功能描述:Curve Fitting Toolbox™提供了用于将曲线和曲面拟合到数据的应用程序和功能。该工具箱可让您执行探索性数据分析,预处理和后处理数据,比较候选模型并删除异常值。您可以使用提供的线性和非线性模型库进行回归分析,也可以指定自己的自定义方程式。该库提供了优化的求解器参数和起始条件,以提高拟合质量。该工具箱还支持非参数建模技术,例如样条,插值和平滑。创建拟合后,您可以应用各种后处理方法进行绘图,内插和外推。估计置信区间;并计算积分和导数。

主要在matlab附加资源管理器:

b55418f28e8ae20dd6759f9473cae7c6.png

d73280a12d6767a24fc5998e572d5131.png

001c77e01334e74e879a947086aa4ea8.png

二、验证是否安装成功

d6d7ca11a9b7a367b470b127a92166ef.png

三、实列操作(拟合以y=sin(x)+1为例)

可以与函数进行拟合或者直接两数据进行拟合,前提要分清谁是因变量和自变量。(按个人需求)
首先输入以下代码:

>

b0cbbc855a30ba8bb81146d5e3e68935.png

接着我们在命令窗口输入:cftool,然后选择拟合的数据,当然我们这里拟合的是二维数据。只需要输入2个数据源。

ba5c85aae0624fc2a04075b1b37dfcfb.png

在获取的拟合左下角就是我们想要的值,即p1和p2(直线拟合)

Linear model Poly1

然后选择拟合的函数类型,可以选择线性,高斯,幂律,等常见的函数类型。此时的数据拟合结果也会在左侧显示。如下面的拟合效果还不错:

17ad2cf92d04442ccf144c2e3f284e11.png

数据拟合的目的:之所以对实验数据进行拟合是为了得到符合数据的函数关系(你可以简单理解为构造函数解析式),从而能更好地理解数据背后的数学、物理意义。进而对实验的各个参数有更深入的理解,能分析出各个参数对实验结果的影响。

89e1ac8d10f0951b93eef25e01e25887.png

参考文献

https://www.jianshu.com/p/dd3c74515aa2https://www.cnblogs.com/tensory/p/6590779.htmlhttps://jingyan.baidu.com/article/6f2f55a16aba04b5b93e6cca.html
你可能喜欢的文章
  • 数据分析开篇:一个简单的应用(2019/11/04)

  • 2020年数据分析必知必会(一):NumPy数组

  • 2020年数据分析必知必会(二):NumPy摘要----文章末尾附Python

  • 2020年数据分析必知必会(三):数组的形状和属性(有福利赠予)

  • 数据分析必知必必会(四):数组的转换,视图,拷贝,索引和广播(这里的“广播”是一个数组的应用:数据处理旧手机铃声)

  • 2020年数据分析必知必会(五):统计和线性代数(使用Numpy与Scipy实现)

  • 2020年数据分析必知必会(六):离散式复制的创建(以北京最近的猪肉价格为例子)

  • 2020年数据分析必知必会(七):pandas入门与数据结构基础

  • 2020年数据分析必知必会(八):使用pandas查询数据和统计分析的应用(短小但强大)

  • 2020年数据分析必知必会(九):数据的分组与聚合

23af5e5062a19339234debec2c049944.gif

63b2db94e7e627bed84bbdf18f5777c9.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值