经典计算机模型,经典计算的计算模型计算机科学导论第五讲.ppt

经典计算的计算模型计算机科学导论第五讲.ppt

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ?演算中的算术 后继运算的定义 succ ? ?n.?f. ?x. f ((nf )x) succ 1 ? (?n.?f. ?x. f ((nf )x)) (?f .?x. f x) = ?f. ?x. f (((?f .?x. f x) f )x) = ?f. ?x. f ((?x. f x) x) = ?f. ?x. f (f x) ? 2 * ?演算中的算术 加和乘的定义 add ? ?x.?y.?f.?z. x f (y f z) mult ? ?x.?y.?f. x(y f ) mult 2 3 ? (?x.?y.?f. x (y f)) (?f. ?x. f 2x) (?f. ?x. f 3x) = (?y.?f. (?f. ?x. f 2x) (y f)) (?f. ?x. f 3x) = ?f. (?f. ?x. f 2x) ( (?f. ?x. f 3x) f ) = ?f. (?f. ?x. f 2x) (?x. f 3x) = ?f. (?x. (?x. f 3x) ((?x. f 3x) x) ) = ?f. (?x. (?x. f 3x) (f 3x) ) = ?f. ?x. f 6x ? 6 * ?演算中的算术 布尔值的编码 T ? ?x.?y. xF ? ?x.?y. y if_then_else ? ?x.?y.?z. xyzand ? ?x.?y. xyF and TT ? (?x.?y. xyF)TT = TTF = T and TF ? (?x.?y. xyF)TF = TFF = F and FT ? (?x.?y. xyF)FT = FTF = F and FF ? (?x.?y. xyF)FF = FFF = F if_then_else Tpq ? (?x.?y.?z. xyz)Tpq = Tpq = (?x.?y. x)pq = p if_then_else Fpq ? (?x.?y.?z. xyz)Fpq = Fpq ? (?x.?y. y)pq = q * ?演算中的算术 结论 可以证明,使用?表达式可定义自然数,定义自然数的加法、乘法、条件判断等,类型为N?N的递归函数都是?表达式可定义的(N:自然数集) 其理论意义之一是,自然数算术可以可靠地嵌在?演算中,因而Church-Rosser定理可以延伸到自然数算术演算中 可计算函数和?演算:自然数函数F:N?N是可计算函数,当且仅当存在着一个?表达式f,使得对N中的每对x, y都有F(x)=y当且仅当fx?=y?,x?和y?分别是x和y的Church数码 * 递 归 函 数 可计算函数(直观讨论) 1. f(n) = n2// 十分简单,小学生都会计算 2. q(n) = ? ?// 计算12, 22, 32, …, 并与n比较, // 若k2 ? n ? (k+1)2 > n, 结果为k 3. p(n) = 第n个素数// 逐个检查1, 2, 3, …是否为素 // 数, 直至找到第n个素数 (上述计算的完成用到加减乘除,还有比较运算等) 1 若在?的十进制表示中有连续x个5 4. g(n) = 0 其他情况完全无法计算 n * 递 归 函 数 可计算函数(直观讨论) 分析计算过程,找出最简单的计算 开方:转化为平方、两数的比较、取“最后一个”例: q(n) = ? ? n * 递 归 函 数 可计算函数(直观讨论) 分析计算过程,找出最简单的计算 开方:转化为平方、两数的比较、取“最后一个” 除法:转化为乘法,a/b可通过计算b?1, b?2, …, 并同a比较 例:在函数“p(n) = 第n个素数”的计算中用到 * 递 归 函 数 可计算函数(直观讨论) 分析计算过程,找出最简单的计算 开方:转化为平方、两数的比较、取“最后一个” 除法:转化为乘法,a/b可通过计算b?1, b?2, …, 并同a比较 乘法:转化为加法 加法:转化为加1运算 一般的计算过程究竟能转化为哪些最基本计算的 计算过程? * 原始递归函数 基本函数(也称初始函数)集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值