点、线、圆、矩形、抛物线的类定义_新定义之圆(1)

点击蓝字关注我们

新定义之圆(1)    

      圆的定义:到定点的距离等于定长的点轨迹是与定点为圆心,定长为半径的圆。

      最常见的变化可以分为三大类:视角类、圆内外动点类、线段距离类。

      视角类:(1)某线段所对角度为固定角度,角的顶点是在两段圆弧上运动;(2)某线段所对角度为一个范围角度,角的顶点是在两个月牙之间运动;(3)圆外一点到圆的两条切线成角度在一个范围内,点轨迹是圆环;

       圆内外动点类:(1)一个在圆上运动的动点与一个定点间线段上的中点或n等分点的轨迹是一个圆;(2)圆上一个定点、圆上一个动点、圆外一个动点之间形成两条线段成比例,圆外动点轨迹是月牙;(3)圆外点与圆心连线对应圆上点的对称点在圆内,圆外点轨迹是圆环;(4)圆外点与圆心连线的垂直平分线与圆有交点,圆外点的轨迹是圆饼;(5)圆外一点到圆的两条切线成固定角度时,点轨迹是圆;

点击边框调出视频工具条  5d876b409565b2be17bc7c54d8595bc0.png

        线段距离类:(1)一个固定线段上任意点与线段外一点之间距离小于等于线段长,线段外点轨迹是个橄榄球;(2)一个固定线段上存在点与线段外一点之间距离小于等于线段长,线段外点轨迹是个操场;

      圆和直线相交只需要考虑相切;圆和线段相交考虑相切与过端点两种情况;圆与双曲线或抛物线相交,相切与相交两种可能。

No.1

K倍相关圆

【例1】(2020初三上期末海淀28).    在平面直角坐标系xOy中,对于点P(a,b)和实数k(k>0),给出如下定义:当ka+b>0时,将以点P为圆心,ka+b为半径的圆,称为点P的k倍相关圆.

例如,在如图1中,点P(1,1)的1倍相关圆为以点P为圆心,2为半径的圆.

(1)在点P1(2,1),P2(1,-3)中,存在1倍相关圆的点是_____,该点的1倍相关圆半径为_______.

(2)如图2,若M是x轴正半轴上的动点,点N在第一象限内,且满足∠MON=30°,判断直线ON与点M的1/2倍相关圆的位置关系,并证明.

(3)如图3,已知点A的(0,3),B(1,m),反比例函数y=6/x的图象经过点B,直线l与直线AB关于y轴对称.

①若点C在直线l上,则点C的3倍相关圆的半径为        .

②点D在直线AB上,点D的1/3倍相关圆的半径为R,若点D在运动过程中,以点D为圆心,hR为半径的圆与反比例函数y=6/x的图象最多有两个公共点,直接写出h的最大值. 

158904bd6447048dbba0212c38fddae4.png

【分析】

(1)由题意知,k=1,针对于P1(2,1),a=2,b=1,ka+b=2+1=3>0,点P1(2,1)的1倍相关圆为以点P为圆心,3为半径的圆,即可求解;

(2)设点M的坐标为(n,0),点M的1/2倍相关圆半径为1/2n.OM=n.因为MP⊥ON,∠OPM=90°,又∠MON=30°,则MP=1/2OM=1/2n,即可求解;

(3)①求出F(1,0),则直线l的解析式为y=﹣3x+3,设C(c,﹣3c+3),由题意知,k=3,3c+(﹣3c+3)=3,即可求解;

②点D在直线AB上,设D(d,3d+3),由题意知,k=1/3即可求解.

【解答】

解:(1)由题意知,k=1,

针对于P1(2,1),a=2,b=1,

∴ka+b=2+1=3>0,

∴点P1(2,1)的1倍相关圆为以点P为圆心,3为半径的圆,

针对于P2(1,﹣3),a=1,b=﹣3,

∴ka+b=1﹣3=﹣2<0,

∴点P2(1,﹣3)不存在1倍相关圆

故答案为:P1;3;

(2)如图2中,结论:直线ON与点M的1/2倍相关圆的位置关系是相切.

理由:设点M的坐标为(n,0),过M点作MP⊥ON于点P,

45dcdee9f1e39de455e880f47171aa9f.png

∴点M的倍相关圆半径为1/2n.

∴OM=n.

∵MP⊥ON,∴∠OPM=90°,∵∠MON=30°,

∴MP=1/2OM=1/2n,

∴点M的倍相关圆的半径为MP,

∴直线ON与点M的倍相关圆相切;

点击边框调出视频工具条  5d876b409565b2be17bc7c54d8595bc0.png

(3)①如图3中,记直线AB与x轴的交点为E,直线l与x轴的交点为F,

∵B(1,m)在反比例函数y的图象上,

∴m=6,

∴B(1,6)

∵A(0,3),

∴直线AB的解析式为y=3x+3,令y=0,则3x+3=0,

∴x=﹣1,

∴E(﹣1,0),

∵直线l是直线AB关于y轴对称,

∴点F与点E关于y轴对称,

∴F(1,0),

∴直线l的解析式为y=﹣3x+3,

∵点C在直线l上,

∴设C(c,﹣3c+3),由题意知,k=3,

∴3c+(﹣3c+3)=3,

∴点C的3倍相关圆的半径是3,

故答案为:3;

②∵点D在直线AB上,设D(n,3n+3),由题意知,k=1/3,

∴R=1/3n+(3n+3)=10/3n+3>0,∴n>-9/10.

联立直线AB和反比例函数表达式并解得:x=1或﹣2,

故点H(﹣2,﹣3)、B(1,6),

圆与反比例函数y的图象最多有两个公共点,则圆和第三象限部分的图象没有交点,

因为随着n 的增大与第一象限部分早晚有交点,

fca1fa06ea66597cdf22b68311f58c17.png

即hR<DH,

c6b2997e71c7ce8e8178264e245a292b.png

【点评】本题考查的是反比例函数综合运用,涉及到一次函数的性质、圆的基本知识、点的对称性等,曲线与圆位置关系转化为距离与半径之间的关系. 

No.2

切割线

【例2】(2020初三上期末朝阳28).在平面直角坐标系xOy中,已知点A(0,2),点B在x轴上,以AB为直径作⊙C,点P在y轴上,且在点A上方,过点P作⊙C的切线PQ,Q为切点,如果点Q在第一象限,则称Q为点P的离点.例如,图1中的Q为点P的一个离点.

c71dc8314bae497d3de57f899fe4715f.png

(1)已知点P(0,3),Q为P的离点.

①如图2,若B(0,0),则圆心C的坐标为          ,线段PQ的长为 

②若B(2,0),求线段PQ的长;

(2)已知1≤PA≤2, 直线l:y=kx+k+3(k≠0).

①当k=1时,若直线l上存在P的离点Q,则点Q纵坐标t的最大值为       ;

②记直线l:y=kx+k+3(k≠0)在-1≤x≤1的部分为图形G,如果图形G上存在P的离点,直接写出k的取值范围.

【分析】

(1)①如图可知:C(0,1),在Rt△PQC中,CQ=1,PC=2;

②如图,过C作CM⊥y轴于点M,连接CP,CQ,M(0,1).在Rt△ACM中,由勾股定理可得CA=√2,CQ=√2.在Rt△PCM中,由勾股定理可得PC=√5.

在Rt△PCQ中,由勾股定理可得PQ.

(2)①当k=1时,y=x+4,Q(t﹣4,t),P的纵坐标为4时,PQ与圆C相切,设B(m,0),则圆心为C(m/2,1),由CQ⊥PQ,可求CQ的解析式为y=﹣x+m/2+1,Q点横坐标为m/4-3/2=t﹣4,则C(2t﹣5,1),再由CQ=AC,得到t=6或t=2;

②y=kx+k+3经过定点(﹣1,3),PQ是圆的切线,AO是圆的弦,则有PQ2=PA•PO,当k<0时,Q点的在端点(﹣1,3)和(1,2k+3)之间运动,当P(0,4)时,PQ=2,以PQ为半径的圆与y轴交于点(0,4﹣2√2),此时k=1﹣2√2,当P(0,3)时,PQ,Q(1,2k+3),1+4k2=3,所以1﹣2√2

【解答】

解:(1)①如图可知:C(0,1),

在Rt△PQC中,CQ=1,PC=2,

∴PQ=√3,

故答案为(0,1);√3;

②如图,过C作CM⊥y轴于点M,连接CP,CQ.

56dd21de5bd2ff4e8adf50c0087eea33.png

∵A(0,2),B(2,0),

∴C(1,1).

∴M(0,1).

在Rt△ACM中,由勾股定理可得CA=√2.

∴CQ=√2.

∵P(0,3),M(0,1),

∴PM=2.

在Rt△PCM中,由勾股定理可得PC=√5.

在Rt△PCQ中,由勾股定理可得PQ=√3.

点击边框调出视频工具条  5d876b409565b2be17bc7c54d8595bc0.png

(2)①如图1:当k=1时,y=x+4,

∴Q(t﹣4,t),

∵1≤PA≤2,

∴P的纵坐标为4时,PQ与圆C相切,

设B(m,0),

∴C(,1),

∵CQ⊥PQ,

∴CQ的解析式为y=﹣x+m/2+1,

∴Q点横坐标为m/4-3/2,

∴m/4-3/2=t﹣4,

∴m=4t﹣10,

∴C(2t﹣5,1),

∵CQ=AC,

797a57dd6c2f511c916a0d77e863f132.png

∴t=6或t=2,

∴t的最大值为6;

故答案为6.

②∵﹣1≤x≤1,

∵y=kx+k+3经过定点(﹣1,3),

∵PQ是圆的切线,AO是圆的弦,

∴PQ2=PA•PO,

a9d98eb0b9405d31bbcbc3d1e38f2107.png

当k<0时,

Q点的在端点(﹣1,3)和(1,2k+3)之间运动,

当P(0,4)时,PQ=2√2,

以PQ为半径径的圆与y轴交于点(0,4﹣2√2),

当圆的半径无穷大时,Q点与点(0,4﹣2√2)无限接近重合

此时k+3=4﹣2√2,即k=1-2√2

当P(0,3)时,PQ=√3,

Q(1,2k+3),

53139626a3a1d5859a36bcfd0e3fc06e.png

∴k=±√2/2,

∴k=-√2/2,

∴1﹣2√2

当k>0时,

当P(0,4)时,PQ=2√2,

以PQ为半径的圆与y轴交于点(0,4+2√2),

当圆的半径无穷大时,Q点gn 点(0,4+2)无限接近重合

此时k+3=4+2√2,即k=1+2√2

当P(0,3)时,PQ=√3,

Q(1,2k+3),

53139626a3a1d5859a36bcfd0e3fc06e.png

∴k=±√2/2,

∴k=√2/2,

∴√2/2≤k<1+2±√2/2.

综上:1﹣2√2

或√2/2≤k<1+2±√2/2

【点评】本题考查圆的综合;熟练掌握圆的切线的性质,通过相似找到过定点线段与切线长之间的数量关系.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值