离散度计算公式 python_Python实现熵值法确定权重

本文介绍了如何使用Python的熵值法计算指标权重。首先解释了熵值法的基本原理,然后通过示例展示了数据的归一化处理、熵值计算、差异系数和权重的计算过程。提供了两个Python代码示例,分别处理CSV和Excel数据,计算得到各个指标的权重。
摘要由CSDN通过智能技术生成

本文从以下四个方面,介绍用Python实现熵值法确定权重:

一. 熵值法介绍

熵值法是计算指标权重的经典算法之一,它是指用来判断某个指标的离散程度的数学方法。离散程度越大,即信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。根据熵的特性,我们可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大。

二. 熵值法实现

1.假设数据有n行记录,m个变量,数据可以用一个n*m的矩阵A表示(n行m列,即n行记录数,m个特征列)

1460221-20190219210429897-1120715369.png

2.数据的归一化处理

xij表示矩阵A的第i行j列元素。

1460221-20190219210438906-789549145.png

3.计算第j项指标下第i个记录所占比重

1460221-20190219210458654-1050646346.png

4.计算第j项指标的熵值

1460221-20190219210509548-665064379.png

5.计算第j项指标的差异系数

1460221-20190219210517574-894884539.png

6.计算第j项指标的权重

1460221-20190219210528091-1932977070.png

三. Python实现熵值法示例1

样例数据1

.csv格式数据内容

var1,var2,var3,var4,var5,var6

171.3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值