《概率统计》教学大纲
课程名称:《概率统计》
英文名称:Probability and Mathematical
课程性质:学科教育必修课程
课程编号:L132217
所属院部:信息科学与工程学院
周 学 时:3学时
总 学 时:48学时
学 分:3学分
教学对象(本课程适合的专业和年级):
计算机科学与技术(3+2)专业(本科)二年级学生
预备知识:高等数学、线性代数
概率统计是研究随机现象客观规律性的数学学科,是本科专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
教学目标与要求:
本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。盛骤谢式千,潘承毅.概率论与数理统计.高等教育出版社,20.11
参考书目:
[1]金炳陶.概率论与数理统计.高等教育出版社,2000.8[2]复旦大学.概率论.高等教育出版,1979.4[3]中山大学数学力学系.概率论及数理统计,1980.3[4]万建平.概率论与数理统计学习辅导与习题全解.高等教育出版,2003.8[5]章昕.概率统计辅导.科学技术文献出版社,2000.9
编写日期:2015年1月制定
课程内容及学时分配(含教学重点、难点):
(一)概率论的基本概念1.随机试验
2样本空间、随机事件
3频率与概率
4等可能概型(古典概型)
5条件概率
6独立性
点:概率、条件概率与独立性的概念; 逆事件概率计算公式; 加法公式;乘法公式;全概率公式;贝叶斯公式。
点:古典概型的有关计算;全概率公式的应用; 贝叶斯公式的应用。
理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。
(二)随机变量及其分布1.随机变量
2离散型随机变量及其分布律
3随机变量的分布函数
4连续型随机变量及其概率密度
5随机变量的函数的分布 点:随机变量及其概率分布的概念; 离散型随机变量分布律的求法;二项分布与泊松分布的实际意义及有关计算;连续型随机变量的概率密度与分布函数之间的关系及其运算;均匀分布、正态分布、指数分布的实际意义及有关计算;用随机变量表示事件,用概率密度或分布函数求事件的概率。 点:随机变量定义; 随机变量函数的分布。
了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布(三)多维随机变量及其分布1.二维随机变量
2边缘分布
3条件分布
4相互独立的随机变量
5随机变量的函数的分布 点:联合分布与边缘分布的概念及其联系;边缘分布与条件分布的求法;随机变量独立性的判别及其应用;二维均匀分布和二维正态分布的结论。 点:随机变量独立性;两个随机变量的函数的分布。
了解多维随机变量的概念。了解二维随机变量的联合分布函数、联合概率分布律、联合概率密度的概念和性质,并会求联合概率密度(联合概率分布)、会求联合分布函数,会计算有关事件的概率。掌握二维随机变量的边缘分布与联合分布的关系。理解随机变量独立性的概念,会应用随机变量独立性概念进行概率计算。知道几个相互独立的正态随机变量之和的分布(四)随机变量的数字特征
1数学期望
2方差
3协方差及相关系数
4矩、协方差矩阵 点:数学期望、方差的概念及计算;几个常用分布的数学期望与方差,协方差及相关系数的计算公式;二维正态随机变量的不相关与独立的等价性。 点:协方差矩阵的概念及计算。
掌握随机变量的数学期望及方差的性质及计算。 了解二项分布、泊松分布、正态分布、均匀分布、指数分布的期望和方差。 掌握协方差,相关系数的定义及有关性质。会利用的联合分布律和联合密度求 和 的期望和方差及相关系数。 会计算分位点,了解其它数字特征。(五)大数定律及中心极限定理1.大数定律
2中心极限定理 点:独立同分布中心极限定理及其应用;隶莫弗—拉普拉斯中心极限定理及其应用。 点:独立同分布中心极限定理及其应用;隶莫弗—拉普拉斯中心极限定理及其应用。
了解切比雪夫不等式了解大数定律的有关结论了解中心极限