之前我们介绍了劈尖的一些基本的东西,这里我们再介绍一下在劈尖移动的时候条纹的变化。
1.若把劈尖的上半部分旋转,那么条纹该如何变化。
由于当这个θ非常小的时候可以近似等于tanθ。
而θ=λn(在介质中的波长)/b(相邻两级明纹或暗纹之间的距离)
所以当这个θ增大的时候,由于在介质中的波长不变,所以这里相邻两级明纹或暗纹之间的距离就会减小。
反之θ减小的时候,b增大。
2.若把劈尖上半部分平移,那么条纹该如何变化。
此时的条纹随着上半部分向上移动的时候,对应的条纹会从右向左移动(之前最左边为暗纹,在移动之后变成了明纹,所以显示在我们眼中是这个从右向左移动)。反之当劈尖上半部分向下移动的时候,对应的条纹会从左向右移动。原因是在这个条纹上半部分移动的时候,相当于光程差发生了变化,当这个光程差变化为λ/2的时候就可以发现之前是明纹的地方现在变成了暗纹。由于光程差为2nd+λ/2。故劈尖上下往返λ/2的时候,相当于光程差就变化了λ,此时我们所观察到的条纹的变化就是原本明的地方先变为暗(λ/4时)之后又变为了明。

本文详细探讨了劈尖移动时干涉条纹的变化规律,包括劈尖旋转和平移的影响。介绍了干涉膨胀仪的原理及其在测量热膨胀系数、膜厚度和光学元件表面检查中的应用。同时讲解了牛顿环的形成和半径计算,以及迈克尔逊干涉仪的工作机制。通过对光程差的理解,阐述了不同干涉现象中条纹移动的规律。
最低0.47元/天 解锁文章
6007

被折叠的 条评论
为什么被折叠?



