摘要
MATLAB datenum时间格式参数众多,本文只简单关注 units 参数,即基准年份和计时度量(天、小时)。
命令行演示在 ipython 和 Octave 中进行。
示例1:小时制,基准年份1800-1-1
Time Attributes:
units = 'hours since 1800-1-1 00:00:0.0'
long_name = 'Time'
axis = 'T'
standard_name = 'time'
coordinate_defines = 'start'
delta_t = '0000-00-01 00:00:00'
actual_range = [1.74e+06 1.75e+06]
avg_period = '0000-00-01 00:00:00'
time(1:5):
1744392
1744416
1744440
1744464
1744488
#来源: 参考1
# python
import numpy as np
origin = np.datetime64('1800-01-01', 'D')
date1 = 1744392/24 * np.timedelta64(1, 'D') + origin # '1999-01-01'
示例2:一天制,基准年份1800-1-1
time {
String units "days since 1800-1-1 00:00:00";
String long_name "Time";
Float64 actual_range 19723.00000000000, 76214.00000000000;
String delta_t "0000-01-00 00:00:00";
String avg_period "0000-01-00 00:00:00";
String prev_avg_period "0000-00-07 00:00:00";
String standard_name "time";
String axis "t";
}
#来源: 参考2
# python
import numpy as np
origin = np.datetime64('1800-01-01', 'D')
date2 = 19723 * np.timedelta64(1, 'D') + origin # '1854-01-01'
示例3:时间列表转换
import numpy as np
import pandas as pd
datenums = np.array([730990, 733301, 729159, 734471, 736858, 731204]) # 来源:参考7
timestamps = pd.to_datetime(datenums-719529, unit='D')
'''
DatetimeIndex(['2001-05-19', '2007-09-16', '1996-05-14',
'2010-11-29', '2017-06-12', '2001-12-19'],
dtype='datetime64[ns]', freq=None)
'''
截图(仅供参考)
验证:
参考