王晓东计算机算法设计与分析视频,计算机算法设计与分析(第4版)[王晓东][电子教案]幻灯片...

《计算机算法设计与分析(第4版)[王晓东][电子教案]幻灯片》由会员分享,可在线阅读,更多相关《计算机算法设计与分析(第4版)[王晓东][电子教案]幻灯片(51页珍藏版)》请在人人文库网上搜索。

1、计算机算法设计与分析(第4版),王晓东 编著 电子工业出版社,1,第1章 算法概述,学习要点: 理解算法的概念。 理解什么是程序,程序与算法的区别和内在联系。 掌握算法的计算复杂性概念。 掌握算法渐近复杂性的数学表述。 掌握用C+语言描述算法的方法。,2,算法(Algorithm),算法是指解决问题的一种方法或一个过程。 算法是若干指令的有穷序列,满足性质: (1)输入:有外部提供的量作为算法的输入。 (2)输出:算法产生至少一个量作为输出。 (3)确定性:组成算法的每条指令是清晰,无歧义的。 (4)有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。,3,程序(Progr。

2、am),程序是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序,因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个问题由操作系统中的一个子程序通过特定的算法来实现。该子程序得到输出结果后便终止。,4,问题求解(Problem Solving),理解问题,精确解或近似解 选择数据结构 算法设计策略,设计算法,5,算法复杂性分析,算法复杂性 = 算法所需要的计算机资源 算法的时间复杂性T(n); 算法的空间复杂性S(n)。 其中n是问题的规模(输入大小)。,6,算法的时间复杂性,(1)最坏情况下的时间复杂性 Tmax(n。

3、) = max T(I) | size(I)=n (2)最好情况下的时间复杂性 Tmin(n) = min T(I) | size(I)=n (3)平均情况下的时间复杂性 Tavg(n) = 其中I是问题的规模为n的实例,p(I)是实 例I出现的概率。,7,算法渐近复杂性,T(n) , as n ; (T(n) - t(n) )/ T(n) 0 ,as n; t(n)是T(n)的渐近性态,为算法的渐近复杂性。 在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶项留下的主项。它比T(n) 简单。,8,渐近分析的记号,在下面的讨论中,对所有n,f(n) 0,g(n) 0。 (1)渐近上。

4、界记号O O(g(n) = f(n) | 存在正常数c和n0使得对所有n n0有:0 f(n) cg(n) (2)渐近下界记号 (g(n) = f(n) | 存在正常数c和n0使得对所有n n0有:0 cg(n) f(n) ,9,(3)非紧上界记号o o(g(n) = f(n) | 对于任何正常数c0,存在正数和n0 0使得对所有n n0有:0 f(n)0,存在正数和n0 0使得对所有n n0有:0 cg(n) f(n) 等价于 f(n) / g(n) ,as n。 f(n) (g(n) g(n) o (f(n),10,(5)紧渐近界记号 (g(n) = f(n) | 存在正常数c1,c2和n。

5、0使得对所有n n0有:c1g(n) f(n) c2g(n) 定理1: (g(n) = O (g(n) (g(n),11,渐近分析记号在等式和不等式中的意义,f(n)= (g(n)的确切意义是:f(n) (g(n)。 一般情况下,等式和不等式中的渐近记号(g(n)表示(g(n)中的某个函数。 例如:2n2 + 3n + 1 = 2n2 + (n) 表示 2n2 +3n +1=2n2 + f(n),其中f(n) 是(n)中某个函数。 等式和不等式中渐近记号O,o, 和的意义是类似的。,12,渐近分析中函数比较,f(n)= O(g(n) a b; f(n)= (g(n) a b; f(n)= (g。

6、(n) a = b; f(n)= o(g(n) a b.,13,渐近分析记号的若干性质,(1)传递性: f(n)= (g(n), g(n)= (h(n) f(n)= (h(n); f(n)= O(g(n), g(n)= O (h(n) f(n)= O (h(n); f(n)= (g(n), g(n)= (h(n) f(n)= (h(n); f(n)= o(g(n), g(n)= o(h(n) f(n)= o(h(n); f(n)= (g(n), g(n)= (h(n) f(n)= (h(n);,14,(2)反身性: f(n)= (f(n); f(n)= O(f(n); f(n)= (f(n).。

7、 (3)对称性: f(n)= (g(n) g(n)= (f(n) . (4)互对称性: f(n)= O(g(n) g(n)= (f(n) ; f(n)= o(g(n) g(n)= (f(n) ;,15,(5)算术运算: O(f(n)+O(g(n) = O(maxf(n),g(n) ; O(f(n)+O(g(n) = O(f(n)+g(n) ; O(f(n)*O(g(n) = O(f(n)*g(n) ; O(cf(n) = O(f(n) ; g(n)= O(f(n) O(f(n)+O(g(n) = O(f(n) 。,16,规则O(f(n)+O(g(n) = O(maxf(n),g(n) 的证明:。

8、 对于任意f1(n) O(f(n) ,存在正常数c1和自然数n1,使得对所有n n1,有f1(n) c1f(n) 。 类似地,对于任意g1(n) O(g(n) ,存在正常数c2和自然数n2,使得对所有n n2,有g1(n) c2g(n) 。 令c3=maxc1, c2, n3 =maxn1, n2,h(n)= maxf(n),g(n) 。 则对所有的 n n3,有 f1(n) +g1(n) c1f(n) + c2g(n) c3f(n) + c3g(n)= c3(f(n) + g(n) c32 maxf(n),g(n) = 2c3h(n) = O(maxf(n),g(n) .,17,算法渐近复杂。

9、性分析中常用函数,(1)单调函数 单调递增:m n f(m) f(n) ; 单调递减:m n f(m) f(n); 严格单调递增:m f(n). (2)取整函数 x :不大于x的最大整数; x :不小于x的最小整数。,18,取整函数的若干性质,x-1 0,有: n/a /b = n/ab ; n/a /b = n/ab ; a/b (a+(b-1)/b; a/b (a-(b-1)/b; f(x)= x , g(x)= x 为单调递增函数。,19,(3)多项式函数 p(n)= a0+a1n+a2n2+adnd; ad0; p(n) = (nd); f(n) = O(nk) f(n)多项式有界; 。

10、f(n) = O(1) f(n) c; k d p(n) = O(nk) ; k d p(n) = (nk) ; k d p(n) = o(nk) ; k d p(n) = (nk) .,20,(4)指数函数 对于正整数m,n和实数a0: a0=1; a1=a ; a-1=1/a ; (am)n = amn ; (am)n = (an)m ; aman = am+n ; a1 an为单调递增函数; a1 nb = o(an),21,ex 1+x; |x| 1 1+x ex 1+x+x2 ; ex = 1+x+ (x2), as x0;,22,(5)对数函数 log n = log2n; lg 。

11、n = log10n; ln n = logen; logkn = (log n)kl; log log n = log(log n); for a0,b0,c0,23,24,|x| 1 for x -1, for any a 0, , logbn = o(na),25,(6)阶层函数 Stirlings approximation,26,27,算法分析中常见的复杂性函数,28,小规模数据,29,中等规模数据,30,用C+描述算法,31,(1)选择语句: (1.1) if 语句: (1.2) ?语句:,if (expression) statement; else statement;,exp。

12、1?exp2:exp3 y= x9 ? 100:200; 等价于: if (x9) y=100; else y=200;,32,(1.3) switch语句:,switch (expression) case 1: statement sequence; break; case 2: statement sequence; break; default: statement sequence; ,33,(2)迭代语句:,(2.1) for 循环: for (init;condition;inc) statement; (2.2) while 循环: while (condition) stat。

13、ement; (2.3) do-while 循环: do statement; while (condition);,34,(3)跳转语句:,(3.1) return语句: return expression; (3.2) goto语句: goto label; label:,35,(4)函数:,例:,return-type function name(para-list) body of the function ,int max(int x,int y) return xy?x:y; ,36,(5)模板template :,template Type max(Type x,Type y) 。

14、return xy?x:y; int i=max(1,2); double x=max(1.0,2.0);,37,(6)动态存储分配:,(6.1)运算符new : 运算符new用于动态存储分配。 new返回一个指向所分配空间的指针。 例:int x;y=new int;y=10; 也可将上述各语句作适当合并如下: int y=new int;y=10; 或 int y=new int(10); 或 int y;y=new int(10);,38,(6.2)一维数组 :,为了在运行时创建一个大小可动态变化的一维浮点数组x,可先将x声明为一个float类型的指针。然后用new为数组动态地分配存储空。

15、间。 例: float x=new floatn; 创建一个大小为n的一维浮点数组。运算符new分配n个浮点数所需的空间,并返回指向第一个浮点数的指针。 然后可用x0,x1,xn-1来访问每个数组元素。,39,(6.3)运算符delete :,当动态分配的存储空间已不再需要时应及时释放所占用的空间。 用运算符delete来释放由new分配的空间。 例: delete y; delete x; 分别释放分配给y的空间和分配给一维数组x的空间。,40,(6.4)动态二维数组 :,创建类型为Type的动态工作数组,这个数组有rows行和cols列。,template void Make2DArray。

16、(Type* ,41,当不再需要一个动态分配的二维数组时,可按以下步骤释放它所占用的空间。首先释放在for循环中为每一行所分配的空间。然后释放为行指针分配的空间。 释放空间后将x置为0,以防继续访问已被释放的空间。,template void Delete2DArray(Type* ,42,算法分析方法,例:顺序搜索算法,template int seqSearch(Type *a, int n, Type k) for(int i=0;in;i+) if (ai=k) return i; return -1; ,43,(1)Tmax(n) = max T(I) | size(I)=n =O(。

17、n) (2)Tmin(n) = min T(I) | size(I)=n =O(1) (3)在平均情况下,假设: (a) 搜索成功的概率为p ( 0 p 1 ); (b) 在数组的每个位置i ( 0 i n )搜索成功的概率相同,均为 p/n。,44,算法分析的基本法则,非递归算法: (1)for / while 循环 循环体内计算时间*循环次数; (2)嵌套循环 循环体内计算时间*所有循环次数; (3)顺序语句 各语句计算时间相加; (4)if-else语句 if语句计算时间和else语句计算时间的较大者。,45,template void insertion_sort(Type *a, i。

18、nt n) Type key; / cost times for (int i = 1; i =0 / c7 n-1 ,46,在最好情况下,ti=1, for 1 i n; 在最坏情况下,ti i+1, for 1 i n;,47,对于输入数据ai=n-i,i=0,1,n-1,算法insertion_sort 达到其最坏情形。因此, 由此可见,Tmax(n)= (n2),48,最优算法,问题的计算时间下界为(f(n),则计算时间复杂性为O(f(n)的算法是最优算法。 例如,排序问题的计算时间下界为(nlogn),计算时间复杂性为O(nlogn)的排序算法是最优算法。 堆排序算法是最优算法。,49,递归算法复杂性分析,int factorial(int n) if (n = 0) return 1; return n*factorial(n-1); ,50,51。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值