matlab定积分积不出来,某些“积不出”函数的定积分近似计算方法及其原函数的近似曲线...

本文利用无穷级数和含参变量积分理论,给出了部分'积不出'函数如e^(-x^2)、sin(x)/x的定积分近似计算方法,并通过Matlab进行数值计算。同时,通过变上限函数绘制了这些函数的原函数近似曲线,验证了正态分布的3σ定律。
摘要由CSDN通过智能技术生成

某些“积不出”函数的定积分近似计算方法及其原函数的近似曲线

The Approximate Calculation Method and Curve of Some “Beyond Element” Definite Integrals

DOI: 10.12677/PM.2020.107076,

PDF, 下载:

203  浏览:

457

作者:

杨立敏, 王泽军, 马 鹏, 于 静, 陈 文:中国石油大学(北京),克拉玛依校区,文理学院,新疆 克拉玛依

摘要:

通常所说的“求不定积分”是指用初等函数的形式把这个不定积分表示出来,如果函数的原函数不是初等函数,则称此函数为“积不出”函数。“积不出”函数的定积分计算时“Newton-Leibniz”公式失效。本文用无穷级数理论和含参变量积分理论给出部分“积不出”函数的定积分近似计算方法,用Matlab编程数值计算部分“积不出”函数的定积分近似值,并与讨论的其广义积分值加以比较,又利用变上限函数绘制了部分“积不出”函数的原函数近似曲线。

Abstract:

In general, “Calculating definite integral” is that we show the definite integral using elementary function, whereas, if the primitive function is not elementary function, then definite integral is “Beyond Element”. At this point, the “Newton-Leibniz” formula can not apply to calculate “Beyond Element” definite integral. In this paper, we apply theory of infinite series and integral depending on a parameter to calculate some “Beyond Element” definite integral. We obtain approximate value of definite integral by applying Matlab of mathematical software, and compare with analytical result of generalized integral. Subsequently, we apply variable upper limit function to plot the ap-proximate curve of primitive function.

文章引用:

杨立敏, 王泽军, 马鹏, 于静, 陈文. 某些“积不出”函数的定积分近似计算方法及其原函数的近似曲线[J]. 理论数学, 2020, 10(7): 631-637. https://doi.org/10.12677/PM.2020.107076

1. 引言

在高等数学教材中,定积分的计算一般要用“Newton-Leibniz”公式,即求出被积函数的原函数,再把上下限的值代入原函数并做减法。同时,大多高等数学教材也指出,有些初等函数的原函数是非初等

函数,即我们无法用初等函数把这些函数的原函数表示出来,比如函数

e

x

2 、

s

i

n

x

x 、

1

l

n

x 、

1

1

+

x

4 等 [1]。

通常所说的“求不定积分”是指用初等函数的形式把这个不定积分表示出来,在这个意义下,以上函数的不定积分是求不出来的,这种函数也称为“积不出”函数。这是否意味着这些函数的定积分及广义积分我们完全计算不出来呢?否则,这些函数的定积分及广义积分该如何得到其值呢?不少同学有此疑问。本文利用无穷级数和含参变量积分的理论逐一给出以上函数的定积分的近似计算方法,并用Matlab软件计算出部分定积分的近似值,便于学生从数值上把握这些积分,也可以把该方法和程序应用到其他类似

定积分的计算中。同时,把函数

s

i

n

x

x,

e

x

2 等广义积分的精确值与定积分的值放在一起,加以比较。

2. 正文

2.1. 基本引理 [2]

引理2.1:幂级数

n

=

0

a

n

x

n 的和函数

s

(

x

) 在其收敛域上可积,并且逐项可积。

引理2.2:如果交错级数

n

=1

(

1

)

n

1

u

n 满足条件:

u

n

u

n

+

1 ;

lim

n

u

n

=

0,

则级数收敛,且其和

s

u

1,其余项

r

n 的绝对值

|

r

n

|

u

n

+

1。

引理2.3:若函数

f

(

x

,

μ

) 与

f

μ

(

x

,

μ

) 在区域D:

a

x

<

+

,

α

μ

β 上连续且无穷积分

φ

(

μ

)

=

a

+

f

(

x

,

μ

)

d

x 在区间

[

α

,

β

] 上收敛,且无穷积分

a

+

f

μ

(

x

,

μ

)

d

x 在区间

[

α

,

β

] 上一致收敛,则函数

φ

(

μ

) 在区间

[

α

,

β

] 上可导,且

φ

(

μ

)

=

a

+

f

μ

(

x

,

μ

)

d

x。

引理2.4:设函数

f

(

x

) 在区间

(

a

,

b

] 上连续,且

f

(

x

)

0

,

x

=

a 为

f

(

x

) 的瑕点,如果存在常数

0

<

q

<

1 使得

lim

x

a

+

(

x

a

)

q

f

( x )

存在,则反常积分

a

b

f

(

x

)

d

x 收敛;

如果

lim

x

a

+

(

x

a

)

f

(

x

)

=

d

>

0,(或

lim

x

a

+

(

x

a

)

f

(

x

)

=

+

∞ ),则反常积分

a

b

f

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值