
文章目录——写在前面的话
2020.3.10更新

这是个什么意思????我写文章没多久就碰到这种情况。。。。。
我寻思着收藏和点赞离得不远啊,别下次一定
往期作品
nixnewiem:高中数学三角函数公式大全,竞赛高考都适用(含公式推导)zhuanlan.zhihu.com
本文只是闲暇之余随便写写,不一定十分系统全面
(注意:并非所有内容均为高考内容)
正弦定理
一、内容:在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即

二、证明
以下给出两种证法
第一种方法:外接圆法
(1)在锐角三角形中

如图1-1,作
故
所以
(2)在直角三角形中

如图1-2,
(3)在钝角三角形中,

如图1-3,
综合(1)(2)(3)可得,在任意一个平面三角形中,
第二种方法:面积法

如图1-4,在
那么
可以看出上述求面积的方法对

而当
于是对于任意三角形都有
那么
故
当然证明方法还有很多,这里就不说了。
三、常见推论
1、
2、
3、
4、
5、
这些推论的证明都比较简单,这里就不说了。但是要提的是,这些推论在高考中应用的十分广泛。
二、余弦定理
一、内容:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

用公式表示就是:
二、证明
以下同样给出两种证法
第一种方法:向量法

如图2-2,设
同理其他两条也可以证明
第二种方法:正弦定理法
如果将余弦定理中的
同时乘以
证明方法还有很多,这里就不说了。
三、正弦定理和余弦定理的应用
1、射影定理
由正弦定理,得
2、秦九韶的“三斜求积术”(海伦公式)
(1)已知三边求三角形面积:
从而可知
所以说海伦公式和秦九韶公式是等价的
(2)已知三条中线长求三角形面积

如图3-1,在
由中位线定理,
容易证明四边形
令
由海伦公式
这其实也是海伦——秦九韶公式的一部分
3、角平分线定理

如图3-2,在
设
在
在
4、中线长定理

如图3-3,在
设
在
在
由于
故两式相加得
故中线
如果我们记边
那么就有
这个模型在很多题目里都有,只不过题目不一定是中线,但解题思路和技巧基本是一样的。
5、莫尔韦德(Mollweide)公式
以前的教材把这个当做课后习题,并且当时没要求掌握和差化积,对于一般的学生来说难度确实很大

6、正切定理
将莫尔韦德(Mollweide)公式两式相除,
而
同理,有
结束
有人会发现我没有讲解三角形,主要是因为我自己在这方面也没有什么鞭辟入里的经验。我依旧采用我一贯的风格,每个定理、公式都有证明,并且基本做到用最容易、最初等的方法证明,这样可以帮助大家理解记忆。毕竟只有这样,才能真正掌握这些知识,明白其中的关键点,自然做题不成问题。
这里有些关于高考三角函数的习题可以看看 三角函数习题,接近或略高于高考难度
如果你对竞赛感兴趣,可以看看这个
三角习题(非高考难度,接近于竞赛自招)(一)
三角习题(非高考难度,接近于竞赛自招)(二)
三角习题(非高考难度,接近于竞赛自招)(三)
如有错误,敬请指摘。