html权重值_HTML标签权重分值表!

发布时间:2019-05-23 21:16:33

点击:次

作者:风雪

来源:代代SEO

网站页面被百度收录后,会默认分配一个评分值,这个评分值也叫做权重值,直接取决于我们网站页面关键词排名的位数,页面评分值越高,我们页面的排名自然也就越高,那么百度是通过哪些因素来评判我们页面权重值的那?

其实因素还是有很多的,但是有一个非常重要的的因素,就是“HTML标签分值”,百度官方根据用户体验度给常用的HTML标签都赋予了一个默认的评分值,如何我们按照百度官方给出的评分值进行布局页面,无疑就可以最大化的提升我们页面基本权重分值,排名也就更加有优势,下面我们详细来讲解!

内部链接文字(10分)、标题title(10分)

内部链接文字就是“内链”称为文章中的锚文本,如果当前的页面,有其他本站页面进行锚文本链接的话,当前页面的权重分值就会增加。可能目前来说不会加到10分了,百度应该对此进行削弱了,但是数值也不会太小,估计在5-8之间左右!以此看来,内链优化工作是非常重要的,我们要加以重视,但大家也要注意,一个页面的内链数量最好控制在1-3个左右,不要太多,因为百度目前对“过度优化”这一块打击力度还是挺大的。

标题title,就是页面的标题,这个分值一定是整个页面中最高的,所以title我们一定要重视,不能瞎写,要按照正确的标题规范来写,另外这边给大家分享一个小窍门,titile的权重分布方式是从左往右的,所以建议大家把核心关键词写在最左面,不要写在中间或者右边,以提高核心关键词的排名!

域名(7分)、每段首句(5分)

域名这一块我讲解一下,因为权重分值为7,比较重要,详细讲解一下,首先是域名后戳,建议大家购买“.com”后戳的域名,因为这类后戳用户信任度高,也是国际域名,是很利于SEO优化的,其次才是“.net/.cn/.la”等后戳。

另外域名中最好含有我们的行业关键词,比如我是做SEO行业的,我就用“www.seocer.com”作为域名,域名其中含有“seo”这个词,如果你是全拼域名就更好了,比如你要做丹东草莓这个关键词,你用的域名是“www。dandongcaomei。com”是非常利于排名的,本来百度给予域名的分值就比较高,如果你合理的运用,你的排名会更靠前!

每段首句,指的是我们网站文章内容开头的第一句!既然百度官方给予每段首句这么高的权重分值,我们当然要合理利用了,我们最好在文章的第一句中出现“关键词”,会合理提升当前页面关键词的排名!

这里要注意:百度的意思是每段首句,故整篇文章所有段落中的第一句话,但是我觉的如果在每段首句都加一次关键字的哈,会有过度过度优化嫌疑,也会给我们文章的编写带来难度,语句很容易不通顺,所以大家只在第一段首句添加关键词就可以了,其他段落位置合理出现即可!

H1~H2标签(5分)、路径文件名(4分)

我们页面中常用到的H标签有H1、H2、H3“H1和H2分值为5”H3的分值可能为1-3会比较低一些。这里需要注意,每一个页面的H1标签只能出现一次,出现的多了会被搜索引擎判断为过度优化,大家一定要注意,但是H2、H3可以多出现几次,来增加页面的权重分值,这是可以的,但是要合理也不要瞎加,否则很容易遭到搜索引擎的惩罚,相关于H标签布局这一块,代代SEO培训都会详细进行讲解的!

路径文件名这一块,分值为4,所以也需要重视,这块主要指的是我们栏目页面的URL路径名称,我们举一个例子,我们的“seo入门答疑”栏目的URL应该怎么写那?长了不符合SEO规范,短了不能表达其意义,所以我们只能调重点去写,比如“www.seocer.com/rumen”这个rumrn即是入门的拼音,也是当前栏目路径的核心词意,最大化提高路径与页面的相关性,来提高页面关键词的排名!www.seocer.com/rumen”这个rumrn即是入门的拼音,也是当前栏目路径的核心词意,最大化提高路径与页面的相关性,来提高页面关键词的排名!

页面相似度(4分)

页面相似度指的是,我们的网站每一个页面不要太相似,会被搜索引擎认为是相同的内容,如果我们通过一些技术手段,把每一个页面处理的相似度都很低,无疑就会增加我们页面的开发成本,整站页面权重分值都会增加!

粗体/斜体(1分)、title属性(1分)、alt属性(0.5分)

粗体与斜体为1分较低的分值,指的是我们在发布文章内容的时候,合理加粗重要语句是可以为我们当前页面加1分的,加粗重要语句也是为了突出词义,更加利于用户的阅读!

title属性指的是a标签中的title,不是页面标题,如果我们每一个a标签都注明title属性,无疑就会为我们页面增加相等的分值,提升页面权重评分。

alt属性指的是img图片标签中的描述标签,分值为0.5分,我们如果把网站中每一个图片都加上alt描述会增加相等的分值,提升页面权重评分!

description描述(0.5分)、keywords标签(0.05分)

这两个属性属于三大标签中的属性,其中description描述的分值为0.5。keywords标签的分值为0.05,虽然都非常低,但是也要加,毕竟苍蝇也是肉,关键的时候,差0.01分,你也要落后与人家,所以都要加好,大家要注意description描述尽量规范在150个以内,keywords标签添加3-5个即可,不要添加太多!

今天我们就讲解到这里,如果大家能从这篇文章中学到干货内容,觉得我们的技术可以的话,你可以参加我们代代SEO培训,我们有一套完整的高效排名方法,并且从网站建设-》实战排名-》页面转化-》项目包装等,我们都会进行实战讲解,课程通俗易懂,一定是你走向高手之路,而且我们还提供课后问题解答等服务,绝对教会你!价格也是非常优惠的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Python的熵权法是一种求解多属性排序问题中各个属性权重的方法,它通过分析各个属性取之间的差异性,按照信息熵的原理来估算各个属性对于排序结果的贡献程度,从而得出各个属性的权重。 熵权法的大致流程如下: 1. 对数据进行标准化处理,将各个属性缩放到相同的数范围内,以防止数据间的差异对排序结果产生影响。 2. 计算各属性的熵,熵越小示该属性的差异性越小,对排序结果的影响越大,其权重也就越高。 3. 计算各属性的信息熵,信息熵反映了数据之间的不确定性,越大示数据的差异性越大,对排序结果的影响也越大。 4. 计算各属性的权重,利用信息熵和熵之间的关系,可以通过简单的公式来计算出各个属性的权重,从而得出最终权重。 在Python中,可以利用pandas包来进行数据处理和计算,利用numpy包来进行矩阵计算,并结合entropy_weight函数来实现熵权法求权重。 具体步骤可以参考如下伪代码: import numpy as np import pandas as pd from scipy.stats import entropy # step1: 标准化处理 data = pd.read_csv('data.csv') std_data = (data - data.min()) / (data.max() - data.min()) # step2: 计算熵 entropy_list = [] for i in range(len(std_data.columns)): entropy_list.append(entropy(std_data.iloc[:,i])) # step3: 计算信息熵 entropy_val = entropy(entropy_list) # step4: 计算权重 weight_list = [] for i in range(len(entropy_list)): weight = (1 - entropy_list[i] / entropy_val) / (len(entropy_list) - entropy_val) weight_list.append(weight) # 输出权重 print(weight_list) 通过以上步骤,我们可以利用Python中的熵权法求得各个属性的权重,从而为排序问题提供有效的依据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_39950470

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值