python不均匀时间序列_python – 时间序列分析 – 不均匀间隔的测量 – pandasstatsmodels...

本文通过示例介绍了如何使用Python的pandas和Statsmodels库对不均匀间隔的时间序列数据进行季节性分解。首先创建了一个均匀间隔的数据集,然后模拟了不均匀间隔的数据,并使用seasonal_decompose()函数进行分析。尽管不均匀间隔的数据增加了季节性模式推断的复杂性,但Statsmodels仍能进行处理。
摘要由CSDN通过智能技术生成

seasonal_decompose()需要一个freq,它作为DateTimeIndex元信息的一部分提供,可以由pandas.Index.inferred_freq推断,或者由用户推断为一个整数,给出每个周期的周期数.例如,每月12个(来自season_mean的docstring):

06000

为了说明 – 使用随机样本数据:

length = 400

x = np.sin(np.arange(length)) * 10 + np.random.randn(length)

df = pd.DataFrame(data=x, index=pd.date_range(start=datetime(2015, 1, 1), periods=length, freq='w'), columns=['value'])

DatetimeIndex: 400 entries, 2015-01-04 to 2022-08-28

Freq: W-SUN

decomp = sm.tsa.seasonal_decompose(df)

data = pd.concat([df, decomp.trend, decomp.seasonal, decomp.resid], axis=1)

data.columns = ['series', 'trend', 'seasonal', 'resid']

Data columns (total 4 columns):

series 400 non-null float64

trend 348 non-null float64

seasonal 400 non-null float64

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值