规则网格有限差分解声波方程个人总结报告规则网格有限差分解声波方程个人总结报告
地球探测科学与技术学院
总 结 报 告
学 校:吉林大学
学 院:地球探测科学与技术学院
专 业:勘查技术与工程(应用地球物理)
科 目:科学计算方法--有限差分解声波方程
姓 名:
学 号:
目录
一. 相关理论基础3
1. 地震波场模拟3
2. 波动方程类型及其局限性3
3. 数值算法类型及其优缺点4
二.有限差分解声波方程基础理论知识6
1.需要的已知条件包括:6
2.弹性波方程6
3.声波方程的有限差分法数值模拟6
4. 稳定性条件7
5. 频散关系式8
6. 有限差分参数8
三.程序及结果成图8
四.通过实验所发现的问题和认识12
五.他人所做的有限差分解波动方程程序及结果成图12
参考文献及资料19
有限差分解声波方程总结报告
相关理论基础
地震波场模拟
地震波场模拟即地震正演,是指已知模型结构,通过物理或数值计算的方法模拟该地质结构下的地震波的传播,最终合成地震记录,也可以认为其是野外数据采集过程的室内再现。物理模拟花费昂贵,人们一般采用比较经济的数值模拟技术。地震波场数值模拟是在给定数学模型(如弹性波方程,声波方程等)、震源和地下几何界面、物性参数(岩层密度、速度等)情况下,研究弹性波或声波的传播规律。
波动方程类型及其局限性
声波方程:
二阶标量声波方程:
一阶压力-速度方程组:
波动方程能够描述且只能描述纵波的传播规律,包括直达波、反射波、透射波、折射波等,但不能描述转换波传播规律。
需要的已知条件包括:震源函数、地层速度、密度边界条件
弹性波方程:
弹性波方程能够描述纵、横波的传播规律,包括直达波、反射波、透射波、折射波以及转换波等。需要的已知条件包括:震源函数、地层速度或根据方程的类型需要提供的地层的其它弹性参数、边界条件。
粘声波/弹性波方程
前面讨论的是理想弹性介质,波在其中传播时,没有能量的损耗,介质中应力和应变关系严格遵循胡克定律(这种理想介质称虎克固体),但波在实际介质中传播时,是有能量损耗的,这就是所谓的弹性波吸收。波在传播过程中,实际介质的不同部位之间会出现某种摩擦力,称为内摩擦力或粘滞力。这种力导致机械能向其他形式能量转换,最终转化为热能消耗掉。
在地震勘探中,地震波传播的实际介质是十分复杂的。在一定条件下,即震源作用时间短,作用力微小,地球介质可以看作完全弹性模型,但随着地震勘探技术的发展,勘探精度要求提高,面临复杂地质目标时,要求地震勘探采用更加符合实际的介质模型进行研究。粘弹性介质模型更符合实际。
但是到目前为止,在地震资料反演处理中应用最多的还是声波方程,弹性波以及粘弹性波方程的应用还只是停留在模拟层次上。
数值算法类型及其优缺点
地震波波动方程数值模拟方法主要包括克希霍夫积分法、傅里叶变换法、有限元法和有限差分法等。
克希霍夫积分法
① 本质
是波动方程积分解的一个数值计算,某种程度上相当于绕射叠加。
② 特点
该方法计算速度较快,但由于射线追踪中存在着焦散、多重路径等问题,故其一般只能适合于较简单的模型,难以模拟复杂地层的波场信息。
傅里叶变换法
① 原理
利用空间的全部信息对波场函数进行三角函数插值,能更加精确地模拟地震波的传播规律,同时,利用快速傅里叶变换(FFT)进行计算,还可以提高运算效率
② 特点
精度高,占用内存小,但缺点是计算速度较慢,对模型的适用性差,尤其是不适应于速度横向变化剧烈的模型。
波动方程有限元法
① 原理
将变分法用于单元分析,得到单元矩阵,然后将单元矩阵总体求和得到总体矩阵,最后求解总体矩阵得到波动方程的数值解
② 优点
理论上可适宜于任意地质体形态的模型,保证复杂地层形态模拟的逼真性,达到很高的计算精度
③ 缺点
占用内存和运算量均较大,不适用于大规模模拟,因此该方法在地震波勘探中尚未得到广泛地应用。
有限差分法
① 基本原理
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分方法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的函数值为未知数的代数方程组。
② 特点
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
③ 主要内容
建立地球物理问题的离散有限差分模型
根据问题的特点将定解区域做网格划分
在所有网格节点上用有限差分格式对导数求近似,对函数、初始条件和边界条件求近似
把原方程离散化为代数方程组
保证计算过程的可行性和计算结果的正确性:解的相容性、稳定性、收敛性
数值求解差分方程组
二.有限差分解声波方程基础理论知识
1.需要的已知条件包括:
(1)