二次线性回归方程公式_线性回归分析详解10(完结篇):线性回归分析预测的十大步骤...

本文是许栩原创专栏《从入门到高手:线性回归分析详解》的最后一章,详述了使用多元线性回归进行需求预测的十大步骤,包括数据收集、清洗、变量选择、相关性分析、消除多重共线性、求解方程、精度确认、显著性验证、计算置信区间和最终预测。通过实例分析了如何预测火锅店业绩,揭示回归分析在需求预测中的应用。
摘要由CSDN通过智能技术生成

86d9a314828f0b76b87835bb3db8e845.png

许栩原创专栏《从入门到高手:线性回归分析详解》第10章,最后一章,完结篇,用线性回归分析做预测,多元线性回归分析预测的十大步骤。【本章免费,专栏链接请点击文末左下角“阅读原文”】

前9章,我分别讲述了回归分析及与回分析相关的概念,一元、多元线性回归分析的公式与计算方法,以及多重共线性、回归方程的精度、显著性验证和置信区间等进行回归分析的重要步骤及其计算方法。至此,以回归分析进行需求预测的各项知识点及各项准备工作全部完成,我们可以正式的以回归分析进行需求预测。

本章,也是本专栏的最后一章,我将详细讲解用多元回归分析进行需求预测的十大步骤:数据收集、数据清洗、列出所有的变量、确定纳入回归方程的自变量、确定并消除多重共线性、求解多元回归方程、确认回归方程的精度、显著性验证、计算置信区间、正式预测。(本专格栏总目录见下图)

98eac152a84224096af5adde7ae705e4.png

一、数据收集。

我们做统计,进行数据分析,首先的,都是需要有数据。有数据才能统计,有数据才能进行数据分析。以回归分析做需求预测,同样需要有数据,最先开始的,是数据收集。

数据收集是按照确定的数据分析和框架内容,有目的的收集、整合相关数据的一个过程。

从上面数据收集的定义可以看出,数据收集需要有明确的目的,即我们先要确定我们是为了什么事而去收集数据。我们的主题是用回归分析进行需求预测,在这里,我们收集数据的目的非常明确,收集数据是为了有效的采用回归分析的方法来进行需求预测。我们需要收集的,就是与这个目的相关的数据,比如销量数据(因变量),以及各种影响销量因素的数据(自变量)等等。

这些数据一般来源于我们日常的记录(含人工记录与系统生成),比如生产原始单据与报表、出入库报单、销售数据、促销信息、重大事件特殊事件记录、调查与调研信息等等。

ae108e94eaa59e1756afd16fde3356f7.png

二、数据清洗。

我们收集到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值