一、热力图绘制参数详解
sns.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True,cbar_kws = None, square=False, xticklabels='auto', icklabels='auto', mask=None, ax=None)
data:指定绘制热力图的数据集
vmin,vmax:用于指定图例中最小值与最大值的显示值
cmap:指定一个colormap对象,用于热力图的填充色
center:指定颜色中心值,通过该参数可以调整热力图的颜色深浅
annot:指定一个bool类型的值或与data参数形状一样的数组,如果为True,就在热力图的每个单元上显示数值
fmt:指定单元格中数据的显示格式
annot_kws:有关单元格中数值标签的其他属性描述,如颜色、大小等
linewidths :指定每个单元格的边框宽度
linecolor:指定每个单元格的边框颜色
cbar:bool类型参数,是否用颜色条作为图例,默认为True
square:bool类型参数,是否使热力图的每个单元格为正方形,默认为False
cbar_kws:有关颜色条的其他属性描述
xticklabels,yticklabels:指定热力图x轴和y轴的刻度标签,如果为True,则分别以数据框的变量名和行名称作为刻度标签
mask:用于突出显示某些数据
ax:用于指定子图的位置
1 importpandas as pd2 importseaborn as sns3 #读取数据
4 Sales = pd.read_excel('Sales.xlsx')5 #根据交易日期,衍生出年份和月份字段
6 Sales['year'] =Sales.Date.dt.year7 Sales['month'] =Sales.Date.dt.month8 #统计每年各月份的销售总额
9 Summary = Sales.pivot_table(index = 'month', columns = 'year', values = 'Sales', aggfunc =np.sum)10
11 #绘制热力图
12 sns.heatmap(data = Summary, #指定绘图数据
13 cmap = 'PuBuGn', #指定填充色
14 linewidths = .1, #设置每个单元格边框的宽度
15 annot = True, #显示数值
16 fmt = '.1f' #以科学计算法显示数据
17 )18 #添加标题
19 plt.title('每年各月份销售总额热力图')20 #显示图形
21 plt.show()