python画热力图_python 中热力图绘制

一、热力图绘制参数详解

sns.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True,cbar_kws = None, square=False, xticklabels='auto', icklabels='auto', mask=None, ax=None)

data:指定绘制热力图的数据集

vmin,vmax:用于指定图例中最小值与最大值的显示值

cmap:指定一个colormap对象,用于热力图的填充色

center:指定颜色中心值,通过该参数可以调整热力图的颜色深浅

annot:指定一个bool类型的值或与data参数形状一样的数组,如果为True,就在热力图的每个单元上显示数值

fmt:指定单元格中数据的显示格式

annot_kws:有关单元格中数值标签的其他属性描述,如颜色、大小等

linewidths :指定每个单元格的边框宽度

linecolor:指定每个单元格的边框颜色

cbar:bool类型参数,是否用颜色条作为图例,默认为True

square:bool类型参数,是否使热力图的每个单元格为正方形,默认为False

cbar_kws:有关颜色条的其他属性描述

xticklabels,yticklabels:指定热力图x轴和y轴的刻度标签,如果为True,则分别以数据框的变量名和行名称作为刻度标签

mask:用于突出显示某些数据

ax:用于指定子图的位置

1 importpandas as pd2 importseaborn as sns3 #读取数据

4 Sales = pd.read_excel('Sales.xlsx')5 #根据交易日期,衍生出年份和月份字段

6 Sales['year'] =Sales.Date.dt.year7 Sales['month'] =Sales.Date.dt.month8 #统计每年各月份的销售总额

9 Summary = Sales.pivot_table(index = 'month', columns = 'year', values = 'Sales', aggfunc =np.sum)10

11 #绘制热力图

12 sns.heatmap(data = Summary, #指定绘图数据

13 cmap = 'PuBuGn', #指定填充色

14 linewidths = .1, #设置每个单元格边框的宽度

15 annot = True, #显示数值

16 fmt = '.1f' #以科学计算法显示数据

17 )18 #添加标题

19 plt.title('每年各月份销售总额热力图')20 #显示图形

21 plt.show()

1501858-20190926170022292-630362581.png

1501858-20190926165925144-395623195.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值