matlab数字图像处理程序,数字图像处理实验程序matlab

41528d3028836879cd698677c3999917.gif数字图像处理实验程序matlab

实验一 内容(一) (1)彩色图像变灰度图像 A=imread( 1.jpg ); B=rgb2gray(A); figure subplot(1,2,1), imshow(A) title( 原图 ) subplot(1,2,2), imshow(B) title( 原图灰度图像 ) (2)彩色图像变索引图像 A=imread( 1.jpg ); figure subplot(1,2,1), imshow(A) title( 原图 ) [X,map]=rgb2ind(A,128); subplot(1,2,2), imshow(X,map) title( 原图索引图像 ) (3)彩色图像变二值图像 A=imread( 1.jpg ); figure subplot(1,2,1), imshow(A) title( 原图 ) C=im2bw(A,0.2); subplot(1,2,2), imshow(C) title( 原图二值图像 ) (4)灰度图像变索引图像(一) A=imread( 1.jpg ); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title( 灰度图像 ) C=grayslice(B,39); subplot(1,2,2), imshow(C) title( 灰度变索引图像 ) (5)灰度图像变索引图像(二) A=imread( 1.jpg ); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title( 灰度图像 ) [X,map]=gray2ind(B,63); subplot(1,2,2), imshow(X,map) title( 灰度变索引图像 ) (6)灰度图像变彩色图像 A=imread( 1.jpg ); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title( 灰度图像 ) C=gray2rgb(B,map); subplot(1,2,2), imshow(C) title( 灰度变彩色图像 ) 内容(二) (1)灰度平均值 A=imread( 1.jpg ); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title( 灰度图像 ) B=double(B); [m,n]=size(B); sumg=0.0; for i=1:m; for j=1:n; sumg=sumg+B(i,j); end end avg=sumg/(m*n) % 均值 maxg=max(max(B)) % 区域最大灰度 ming=min(min(B)) % 区域最小灰度 (2)彩色平均值 A=imread( 1.jpg ); figure imshow(A) title( 彩色图像 ) A=double(A); [m,n]=size(A); sumg=0.0; for i=1:m; for j=1:n; sumg=sumg+A(i,j); end end avg=sumg/(m*n) squre=m*n maxg=max(max(A)) ming=min(min(A)) 内容(三) 采样量化 实验二 图像变换 傅里叶变换、反变换、 I=imread( 19.jpg ); A=rgb2gray(I); x1=fft2(A); x2=fftshift(x1); x3=ifft(x1)/10; figure, subplot(1,4,1); imshow(A) title( 原图 ); subplot(1,4,2); imshow(x1) title( 频谱图 ); subplot(1,4,3); imshow(log(abs(x2)+1),[0 10]); title( 直流分量移至频谱图中心 ); subplot(1,4,4); imshow(x3,[0 10]) title( 傅里叶反变换 ); DCT变换、反变换 X=imread( 19.jpg ); I=rgb2gray(X); subplot(1,3,1); imshow(I); title( 原图 ); subplot(1,3,2); J=dct2(I); imshow(log(abs(J)),[0 20]); title( 二维离散余弦变换 ); subplot(1,3,3); K=idct2(J)/20; imshow(K,[0 20]); title( 二维离散反余弦变换 ); 利用DCT变换压缩图像 I=imread( 19.jpg ); A=rgb2gray(I); B=DCT2(A); B(abs(B)<0.1)=0; C=idct2(B)/255; figure, subplot(1,3,1); imshow(A); title( 原图 ); subplot(1,3,2); imshow(B); title( 二维离散余弦变换频谱图 ); subplot(1,3,3); imshow(C); title( 压缩后图像 ); 实验三 图像增强 (一)灰度图像增强 (1)线性变换法 clc; clear all; I=imread( 19.jpg ); A=rgb2gray(I); colormap; imshow(A);%设置图像倒数参数 j=imadjust(A,[0 1],[1 0],1.5); figure;subimage(j) (2)灰度图像的非线性变换(之对数) I=imread( 19.jpg ); colormap imshow(I) J=double(I); J=45*log(J+1); I=uint8(J); figure,subimage(J) (二)直方图校正 直方图均衡 I=imread( 19.jpg ); B=rgb2gray(I); imshow(B,[40 255]); figure, imhist(B) title( 直方图 ) J=imadjust(B,[0.15 0.9],[0 1]); figure, imhist(B,64) title( 均衡直方图 ) 滤波 I=imread( 19.jpg ); figure, B=rgb2gray(I); C=imnoise(B, salt D=imfilter(B,fspecial( average ,3)); E=medfilt2(B); subplot(1,3,2) imshow(D) title( 均值滤波 ) subplot(1,3,3) imshow(D) title( 中值滤波 ) subplot(1,3,1) imshow(C) title( 加入椒盐噪声图像 ) 锐化处理 I=imread( 19.jpg ); A=rgb2gray(I); figure, subplot(2,3,1),imshow(A); title( 原图 ); hs=fspecial( sobel ); S=imfilter(A,hs); hp=fspecial( prewitt ); P=imfilter(A,hs); A=double(A);%双精度型 H=[0 1 0,1 -4 1,0 1 0];%拉普拉斯算子 J=conv2(A,H, same ); K=A-J; subplot(2,3,2),imshow(K); title( 拉普拉斯锐化图像 ); B=edge(A, roberts ,0.1); subplot(2,3,3),imshow(B); title( 罗伯特锐化图像 ); subplot(2,3,4),imshow(S); title( sobel算子锐化图像 ); subplot(2,3,5),imshow(P); title( prewitt算子锐化图像 ); 实验四 放缩 A=imread( 19.jpg ); imshow(A); title( 原图 ) B=imresize(A,2) figure, imshow(B); title( 二倍图 ) C=imresize(A,0.5) figure imshow(C) title( 二分之一图 ) 旋转 A=imread( 19.jpg ); figure subplot(1,4,1), imshow(A); title( 原图像 ) B=imrotate(A,30, nearest ); subplot(1,4,2), imshow(uint8(B)); title( 旋转30度图像 ) C=imrotate(A,45, nearest ); subplot(1,4,3), imshow(uint8(C)); title( 旋转45度图像 ) D=imrotate(A,60, nearest ); subplot(1,4,4), imshow(uint8(D)); title( 旋转60度图像 ) 镜像 A1=imread( 19.jpg ); A1=double(A1); Figure, subplot(1,4,1), imshow(uint8(A1)); H=size(A1); title( 原像 ) A2(1:H(1),1:H(2),1:H(3))=A1(H(1):-1:1,1:H(2),1:H(3));%垂直镜像 subplot(1,4,2), imshow(uint8(A2)); title( 垂直镜像 ) A3(1:H(1),1:H(2),1:H(3))=A1(1:H(1),H(2):-1:1,1:H(3));%水平镜像 subplot(1,4,3), imshow(uint8(A3)); title( 水平镜像 ) A4(1:H(1),1:H(2),1:H(3))=A1(H(1):-1:1,H(2):-1:1,1:H(3));%对角镜像 subplot(1,4,4), imshow(uint8(A4)); title( 对角镜像 ) 剪切 A1=imread( 19.jpg ); A2=imcrop(A1,[75 68 100 110]); figure subplot(1,2,1), imshow(A1); title( 原像 ) subplot(1,2,2), imshow(A2); title( 剪切后像 ) 实验五 阈值分割 A=imread( 19.jpg ); figure subplot(1,4,1), imshow(A); title( 原图像 ) B=im2bw(A,91/255); subplot(1,4,2), imshow(B); title( 阈值91的图像 ) C=im2bw(A,71/255); subplot(1,4,3), imshow(C); title( 阈值71的图像 ) D=im2bw(A,140/255); subplot(1,4,4), imshow(D); title( 阈值140的图像 ) 边缘检测 I=imread( 19.jpg ); A=rgb2gray(I); figure subplot(1,4,1), imshow(A); title( 原图像 ) B=edge(A, sobel ,0.1);%edge边缘检测函数 subplot(1,4,2), imshow(B); title( sobel算子检测 ) C=edge(A, roberts ,0.1);%0.1为门限 subplot(1,4,3), imshow(C); title( roberts算子检测 ) D=edge(A, prewitt ,0.1); subplot(1,4,4), imshow(D); title( prewitt算子检测 )

<p> <span style="color:#337FE5;font-size:16px;">【课程简介】</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">本课程基于面向Python的OpenCV,以OpenCV的官方文档的知识脉络为主线,</span><span style="font-size:14px;">介绍了OpenCV函数的具体使用方法、函数所使用的算法的具体原理。</span> </p> <p> <span style="font-size:14px;">在介绍函数使用时,提供了大量的程序案例演示。</span> </p> <p> <span style="font-size:14px;">在介绍具体原理时,采用了通俗易懂的语言和贴近生活的示例来说明问题,尽量避免涉及过于复杂抽象的公式。</span> </p> <p> <span style="font-size:14px;"> 课程包含数字图像处理的常用知识点,覆盖面全,方便学员系统深入全面地掌握OpenCV。</span> </p> <p> <br /> </p> <p> <span style="font-size:16px;color:#337FE5;">【你将收获什么】</span> </p> <p> <span style="font-size:16px;color:#337FE5;"><span> </span></span> </p> <p align="left" class="ql-long-10663260 ql-align-left" style="font-size:11pt;color:#494949;"> <span style="font-size:14px;">1.  掌握数字图像的在计算机内表示</span><span style="font-size:14px;"></span><span style="font-size:14px;">的方法和处理的基本原理。掌握数字图像的表示方法是进行图像处理的前提和基础,能够为后续的智能图像处理打下坚实基础。</span> </p> <p align="left" class="ql-long-10663260 ql-align-left" style="font-size:11pt;color:#494949;"> <span style="font-size:14px;">2.  使用好OpenCV开源库对于提升工作效率具有很大的帮助。OpenCV是优秀的开源库,提供了大量的函数帮助我们提升工作效率。大多数情况下,我们直接调用函数就能够满足我们的需求。同时,它的函数具有较好的交互性,能够根据需要更好地掌控图像处理的具体细节。</span> </p> <p class="ql-long-10663260" style="font-size:11pt;color:#494949;"> <span style="font-size:14px;">3.  学习图像处理的常用算法。课程不仅介绍函数的具体使用,也介绍了常用算法的基本原理,帮助学习者更好地理解图像处理的基本逻辑、方法,快速入门图像处理领域。</span> </p> <br /> <p> <br /> </p> <p> <span style="font-size:16px;color:#337FE5;">【我将如何教你】</span> </p> <p> <span style="font-size:14px;">1)在“黑盒”和“白盒“之间取得平衡</span> </p> <p> <span style="font-size:14px;"> </span><span style="font-size:14px;">可以将OpenCV看成“黑盒”,不用关心其函数是如何实现的。在需要实现某一个功能时,直接调用其对应的函数即可,像使用Photoshop的各种功能一样。也可以将OpenCV看成“白盒”,关注其每一个函数的具体实现,认真研究每一个函数的具体实现方法和实现细节。这两种方式都是学习图像处理的很好方式,但是大多数课程过于强调其中某一种,要么忽略了算法的实现、要么忽略了使用方法。本课程尽量将OpenCV在“黑盒”和“白盒”之间取得平衡。既介绍算法的原理和方法,又将重点放在如何调用函数上,让学习者能够更加游刃有余地在计算机视觉项目中使用OpenCV来解决具体的问题。</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">2)将枯燥的算法采用具体的案例介绍</span> </p> <p> <span style="font-size:14px;"> 在图像处理中,有大量的算法保证了</span><span style="font-size:14px;">图像处理的准确、高效。OpenCV将一些常用的算法进行了封装,我们可以直接调用OpenCV的函数来使用对应的算法。但是,深入地理解算法能够帮助学习者更好地使用OpenCV函数。本课程尝试抛弃传统的使用复杂公式介绍算法的形式,尽量通过简单、通俗易懂的生活中实例来帮助学习者理解算法的基本逻辑</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">3)案例驱动、强调实战</span> </p> <p> <span style="font-size:14px;">OpenCV是一个庞大的资源库,提供了非常多的函数帮助我们高效地处理问题。初学者使用OpenCV的最大困惑就是熟练地掌握了每一个函数的调用方法,但是在解决实际问题时,不知道具体应该使用哪个函数。本课程通过大量的具体案例帮助学习快速掌握每个函数的应用场景,快速掌握OpenCV的核心使用方法和技巧。</span><br /> <span style="font-size:14px;"></span><span style="font-size:14px;"></span> </p>
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页