python可视化源码_决策树可视化【含Python源码】

本文详细介绍了如何使用scikit-learn训练决策树模型,并通过Matplotlib和Graphviz进行可视化。内容包括如何用Matplotlib直接绘制决策树,使用Graphviz创建更复杂的可视化,以及展示随机森林中单个决策树的可视化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树是一种流行的有监督学习方法。决策树的优势在于其既可以用于

回归,也可以用于分类,不需要特征缩放,而且具有比较好的可解释性,

容易将决策树可视化。可视化的决策树不仅是理解你的模型的好办法,

也是向其他人介绍你的模型的运作机制的有利工具。因此掌握决策树

可视化的方法对于数据分析工作者来说非常重要。

在这个教程里,我们将学习以下内容:

如何使用scikit-learn训练一个决策树模型

如何使用Matplotlib将决策树可视化

如何使用Graphviz将决策树可视化

如何将随机森林或决策树包中的单个决策树可视化

教程的代码可以从这里下载。

现在让我们开始吧。

1、用scikit-learn训练决策树模型

为了可视化决策树,我们首先需要用scikit-learn训练出一个决策树模型。

首先导入必要的Python库:

1

2

3

4

5

6

7

8

9import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

from sklearn.datasets import load_breast_cancer

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

import pandas as pd

import numpy as np

from sklearn import tree

然后载入iris数据集。scikit-learn内置了Iris数据集,因此我们不需要

从其他网站下载了。下面的Python代码载入Iris数据集:

1

2

3

4import pandas as pd

from sklearn.datasets import load_irisdata = load_iris()

df = pd.DataFrame(data.data, columns=data.feature_names)

df['target'] = data.target

Iris数据集看起来是这样:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值