文档介绍:
核科学技术学院
实验报告
实验项目名称 MATLAB数值计算
所属课程名称 MATLAB及应用
实验类型上机实验
实验日期
指导教师
班级
学号
姓名
成绩
一、实验名称
MATLAB符号计算
二、实验目的
(1)掌握定义符号对象的方法
(2)掌握符号表达式的运算法则以及符号矩阵运算
(3)掌握求符号函数极限及导数的方法
(4)掌握求符号函数定积分和不定积分的方法
三、实验原理
1. 函数极限及导数的方法
(1)函数极限:limit(F,x,a) 求符号函数f(x)的极限值。即计算当变量x趋近于常数a时,f(x)函数的极限值。
(2)limit(f):求符号函数f(x)的极限值。符号函数f(x)的变量为函数findsym(f)确定的默认变量;没有指定变量的目标值时,系统默认变量趋近于0,即a=0的情况。
(3) limit(f,x,a,'right'):求符号函数f的极限值。'right'表示变量x从右边趋近于a。
(4)limit(f,x,a,‘left’):求符号函数f的极限值。‘left’表示变量x从左边趋近于a。
2. 微分:
diff(s):没有指定变量和导数阶数,则系统按findsym函数指示的默认变量对符号表达式s求一阶导数。
diff(s,'v'):以v为自变量,对符号表达式s求一阶导数。
diff(s,n):按findsym函数指示的默认变量对符号表达式s求n阶导数,n为正整数。
diff(s,'v',n):以v为自变量,对符号表达式s求n阶导数。
3. 函数定积分和不定积分的方法:
int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分。
int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分。
int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。
梯形法:trapz(x,y):x为分割点构成的向量,y为被积函数在分割点上的函数值构成的向量;
抛物线法:quad(f,a,b,tol),f是被积函数,[a,b]是积分区间,tol是精度。
4. 求和及泰勒级数展开的方法:
(1)求和symsum(s,v,n,m) 其中s表示一个级数的通项,是一个符号表达式。v是求和变量,v省略时使用系统的默认变量。n和m是求和的开始项和末项。
(2)泰勒级数展开 taylor(f,v,n,a) 该函数将函数f按变量v展开为泰勒级数,展开到第n项(即变量v的n-1次幂)为止,n的缺省值为6。v的缺省值与diff函数相同。参数a指定将函数f在自变量v=a处展开,a的缺省值是0。
四、实验内容
1. 求下列极限: 求极限前先定义符号变量
(1) (2)
(3) (4)
(5)
2. 求下列函数的导数:
(1) (2)
(3) (4)
(5) (6) ,求,,
3. 求下列函数的积分
(1) (2)
(3) (4)
(5) 由曲面,,所围成
(6)
4. 解下列方程组。
(1)
(2) (3)
5. 求下列级数的和
(1) (2)
6. 泰勒级数展开
将函数展开成的幂级数
五、实验过程及结果(含源代码)
1. >> syms x;
>> F1=limit(atan(x)/x,x,0)
F1 =
1
>> F2=limit(((1+x)/(1-x))^(1/x),x,0)
F2 =
exp(2)
>> F3=limit((x*log(1+x))/sin(x^2))
F3 =
1
>> F4=limit(1/(1-x)-1/(1-x^3),x,1)
F4 =
NaN
>> syms x t a;
>> limit((1+(2*t)/(a*x))^(5*x),x,inf)
ans =
exp((10*t)/a)
2.
>> syms x;
>> y=(cos(x))^3-cos(3*x);
>> diff(y,x)
ans =
3*sin(3*x) - 3*cos(x)^2*sin(x)
>> y1=x*sin(x)*log(x);
>> diff(y1,x)
ans =
sin(x) + log(x)*sin(x) + x*cos(x)*log(x)
>> y2=(x*exp(x)-1)/sin(x);
>> diff(y2,x)
ans =
(exp(x)+x*exp(x))/sin(x)-(x*exp(x
内容来自淘豆网www.taodocs.com转载请标明出处.