散列技术时记录的存储位置和它的关键字之间建立的一个确定对应的关系f,使得每个关键字key对应一个存储位置f(key),查找时根据这个对应的关系找到给定值key的映射f(key),若查找集合中存储这个记录,则必定在f(key)的位置上。
常见散列方法:
1.直接定址法
其公式为:
2.数字分析法
容易重复分布太集中的某分布均匀,可作为散列地址几个数字,例如电话号码的后四位
3.平法取中法
4.折叠法
折叠法就是将关键字从左到右分割成位数相等的几个部分(注意最后一部分不够可以稍微短些);然后将部分叠加求和,并按散列表的表长,取后几位作为散列地址。
5.除留余数法
公式:
6.随机数法
公式:
解决散列冲突的方法
开放定址法:一旦发生了冲突,就取寻找下一个空的散列地址,只有散列表足够大,空的散列地址总能找到,并将记录存入
公式:
链地址法:
关键字集合{12,67,56,16,25,37,22,29,15,47,48,34}表长为12,用散列函数
f(key) = key mod 12,得到如下所示:
散列表的查找实现
0.散列表结构和宏设计
typedef int Status;
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100 //存储空间初始分配量
#define SUCCESS 1
#define UNSUCCESS 0
//定义散列表长为数组的长度
#define HASHSIZE 12
#define NULLKEY -32768
typedef struct
{
//数据元素存储基址,动态分配数组
int *elem;
//当前数据元素个数
int count;
}HashTable;
int m=0; /* 散列表表长,全局变量 */
1.初始化散列表
// 初始化散列表
Status InitHashTable(HashTable *H)
{
int i;
//① 设置H.count初始值; 并且开辟m个空间
m=HASHSIZE;
H->count=m;
H->elem=(int *)malloc(m*sizeof(int));
//② 为H.elem[i] 动态数组中的数据置空(-32768)
for(i=0;i<m;i++)
H->elem[i]=NULLKEY;
return OK;
}
2.散列函数
// 散列函数
int Hash(int key)
{
//除留余数法
return key % m;
}
3.插入关键字进散列表
//插入关键字进散列表
void InsertHash(HashTable *H,int key)
{
//① 求散列地址
int addr = Hash(key);
//② 如果不为空,则冲突
while (H->elem[addr] != NULLKEY)
{
//开放定址法的线性探测
addr = (addr+1) % m;
}
//③ 直到有空位后插入关键字
H->elem[addr] = key;
}
4. 散列表查找关键字
// 散列表查找关键字
Status SearchHash(HashTable H,int key,int *addr)
{
//① 求散列地址
*addr = Hash(key);
//② 如果不为空,则冲突
while(H.elem[*addr] != key)
{
//③ 开放定址法的线性探测
*addr = (*addr+1) % m;
//④H.elem[*addr] 等于初始值或者循环有回到了原点.则表示关键字不存在;
if (H.elem[*addr] == NULLKEY || *addr == Hash(key))
//则说明关键字不存在
return UNSUCCESS;
}
return SUCCESS;
}
使用和打印
int arr[HASHSIZE]={12,67,56,16,25,37,22,29,15,47
int i,p,key,result;
HashTable H;
//1.初始化散列表
InitHashTable(&H);
//2.向散列表中插入数据
for(i=0;i<m;i++)
InsertHash(&H,arr[i]);
//3.在散列表查找key=39
key=39;
result=SearchHash(H,key,&p);
if (result)
printf("查找 %d 的地址为:%d n",key,p);
else
printf("查找 %d 失败。n",key);
//4.将数组中的key,打印出所有在散列表的存储地址
for(i=0;i<m;i++)
{
key=arr[i];
SearchHash(H,key,&p);
printf("查找 %d 的地址为:%d n",key,p);
}
return 0;
5333

被折叠的 条评论
为什么被折叠?



