2.8 圆锥的体积
1教学目标
1.通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。
2.通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。
3.进一步培养学生将所学知识运用和服务于生活的能力。
2学情分析
学生学习了圆柱的体积和圆锥的体积,知道了圆锥的体积是与它等底等高圆柱体积的1/3。会使用圆锥的体积计算公式是V=1/3sh,来解答简单的圆锥体积的问题。但是对稍复杂的圆锥体积的计算缺少经验,对圆柱与圆锥体积之间的微妙关系(如,等体积等高时,或等体积等底时,或把圆柱加工成最大圆锥等)不甚了解。
3重点难点
灵活运用圆柱圆锥的有关知识解决实际问题。求蒙古包的空间大小,求碎石堆的重量等复杂问题。
4教学过程
教学活动
活动1【导入】教学过程
一、基本练习
1.圆柱、圆锥体的体积公式是什么?字母公式?
2.圆锥体的体积公式是如何推导的?
3.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。
(1)一个圆柱体积是1.8立方分米,与它等底等高的圆锥的体积是( )立方分米。
(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是( )立方分米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。
4.教师根据学生练习中存在的问题,集体评讲。
5.小结:只要是等底等高的圆柱和圆锥,那么圆锥的体积是圆柱的1/3,圆柱的体积是圆锥的3倍。
二.综合练习
1.狐狸和小白兔来帮山羊伯伯搬运盖房子的木材,狐狸抢先选择了圆柱形木材,小白兔笑了笑,选择了圆锥形木材。狐狸占到便宜了吗?
(1)读题
(2)准备用什么办法来解决
(3)通过计算你发现了什么?
(4)除了发现它们的体积相等之外,它们的底面积、高、体积这三者之间有什么关系?小组讨论
(5)小结:等底等体积的圆柱和圆锥,圆锥的高是圆柱的3倍。
2.山羊伯伯送给狐狸和小白兔各一堆粮食,狐狸认为圆锥形的粮食多,就抢先要了圆锥形的粮堆,小白兔又笑了笑,要了圆柱形粮堆。狐狸占到便宜了吗?
底面积:12平方米
底面积:4平方米
(1)读题:你是怎么想的
(2)这时候它们的底面积、高、体积三者之间又有怎样的关系?
(3)小结:等高等体积的圆柱和圆锥,圆锥的底面积是圆柱的3倍。
3.底面积、体积分别相等的圆柱体和圆锥体,如果圆锥的高是15厘米,那么圆柱的高是( )厘米。
A、5厘米 B、15厘米 C、30厘米 D、45厘米
4.一个圆柱体和一个圆锥体的高和体积分别相等,已知圆柱体的底面积6平方厘米,那么圆锥体的底面积是( )平方厘米。
三、拓展延伸
1.一根圆柱形木材长20分米,把截成4个相等的圆柱体. 表面积增加了18.84平方分米.截后每段圆柱体积是( ).
[深色木质] [深色木质] [深色木质] [深色木质] [深色木质]
2.张师傅要把一根圆柱形木料(如右图)加工成圆锥形。
(1)圆锥的体积最大是多少立方分米?
(2)你还能提出什么问题?
削去木料的体积是多少立方分米?
削去木料的体积是圆柱体积的几分之几?
削去木料的体积是圆锥体积的几倍?
四、全课总结
展开阅读全文