《概率论与数理统计》作业集及答案
第1章 概率论的基本概念
§1 .1 随机试验及随机事件
1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;
(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;
2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .
(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算
1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:
(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: .
(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: .
(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .
2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则
(1)=?B A ,(2)=AB ,(3)=B A ,
(4)B A ?= ,(5)B A = 。
§1 .3 概率的定义和性质
1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则
(1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= .
2. 已知,
3.0)(,7.0)(==AB P A P 则)(B A P = .
§1 .4 古典概型
1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,
(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.
2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式
1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人抽“中‘的概率相同。
2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机地取一个球,求取到红球的概率。
§1 .7 贝叶斯公式