matlab求二元函数极值算法_高等数学下册(部分)复习——知识点:多元函数微分方法及其应用...

空间解析几何与向量代数的部分就不说了,比较简单,以几道例题练一练就差不多了。

首先从第九章,多元函数微分方法及其应用说起。

01

多元微分_理论

要学习多元,我们首先要从一元开始,一元的学会了,就能够类比得到多元的结论。在理论部分,首先要介绍一些相关的概念

一、连续

一元

我们知道,对于一元函数f(x)上任意的一点a,如果,x无限趋近于a时的极限值,等于f(a)的值,那么,就称f(x)在x=a处连续。

具体公式如下:

d539a382950f762fbd7a549a3bc844b1.png

还有下面的公式,也能表示f(x)在a点连续。

94cca8aacfae7b5a82b609354484df1b.png

(f(a-0)表示从左侧趋近于a的极限值,f(a+0)表示从右侧趋近于a的极限值)

二元

由一元函数进行类比,我们可以得到下面的公式:

2a9ce5ff5ca808795acda6afb230e038.png

如果上式成立,那么f(x,y)在该点连续。

二、偏导数

对于一元函数,导数的概念大家已经很熟悉了,对于二元函数来说,偏导数就是它关于其中一个变量的导数,而保持另一个变量恒定。

比如说二元函数f(x,y)对x求偏导数,就是将函数中的y看作常数,对x求导。

下式为f(x,y)对x的一阶偏导

f270f99e6b52f05c17e54e985915ed8c.png

下式为f(x,y)对x的二阶偏导

0bb3f0fdfc8ceed0c09b36e2354b64e3.png

  • f(x,y)先对x求一阶偏导,然后对y求二阶偏导。

  • f(x,y)先对y求一阶偏导,然后对x求二阶偏导。

对于以上两种情况,我们称为二阶混合偏导数

对于二阶混合偏导数,需要注意

  1. 先后顺序很重要,先对x求偏导和先对y求偏导是不一样的。

  2. 一个定理:若f(x,y)二阶连续可偏导,那么它的两种二阶混合偏导数是相等的,如下图所示:

    486e5813f9fc581fb642bab9dbf2d389.png

就是说,无论是先对x求偏导,还是先对y求偏导,结果是一样的。

三、全微分

一元

对于函数y=f(x),取其中一点8b6ec692f2bca6568d8805e38ecad72b.png

从这点出发,取一段很小的距离,我们可以得到:

bcf314c20c73e107a3247410c5b20239.png

可微条件:

3d05ea5787f30adda8c0ba28f42e1d5a.png

如果上式成立,那么就称y=f(x)在35b6a1d6ab5fbb41ae561982bbc327f7.png处可微。4ee367b8a0a946a444f412baa2d43095.png称为f(x)在35b6a1d6ab5fbb41ae561982bbc327f7.png处的微分。

  • A在数值上等于35b6a1d6ab5fbb41ae561982bbc327f7.png处f(x)的导数。

  • 可导的充分必要条件是可微。

  • 对d(f(x)),想要f(x)从括号出来,需要对f(x)求导。

二元

由一元部分,类比可知:

57aa9385c7dd9d21f3c81842fcc368c2.png

其中:

1fd46ce8964589bb5da0f4881c43d030.png

如果上式成立,那么称f(x,y)在ec2b3bec81aa0aee66aa161c50144a4e.png处可(全)微,d5ce06606a4502dba450ff93e0981af6.png称为f(x,y)在ec2b3bec81aa0aee66aa161c50144a4e.png处的全微分。

介绍完概念,接下来是一些常用的结论

一、连续,可偏导,可微,连续可偏导

  • 连续可偏导可以推出可微。

  • 可微可以推出可偏导。

  • 可微可以推出连续。

  • 其他的关系不能推出。

二、cramer法则

ec00c7b3d548e4e710f15017dced1711.png

最后是关于求偏导的相关内容。

一、显函数求偏导

把不求偏导的字母看作常数就可以了。这个只要会求导,基本没有问题。

二、复合函数求偏导

0c33c7dd0ce5ab0fa350e0870de318bd.png

2d4573bc9f8207f7fc8621d497216c58.png

三、隐函数求偏导

对等式两边同时求偏导,注意是对哪一个字母求偏导。

02

多元微分_应用

一、几何应用

  • 曲面(平面)——切平面,法线

  • 曲线(直线)——切线,法平面

  • 距离(两点,点与平面,点与直线,异面直线)

  • 夹角(两向量,两平面,两直线,直线与平面)

二、物理应用

  • 方向导数

  • 梯度

求某函数在某点处沿某方向的方向导数步骤:

  1. 对函数求关于每一个自变量偏导。

  2. 将题目中点的坐标分别代入。

  3. 由题目所给方向,求出cosα,cosβ,...

  4. 对应相乘再相加,即得所求方向导数。

梯度:上面b步骤中代入之后所得的值构成的向量,就是在这一点处的梯度。梯度在定点,是一个固定的向量,方向导数的变化是α,β这些夹角的变化引起的。

方向导数取最大值时,即沿着梯度的方向,θ=0。(θ为梯度的向量与向量{cosα,cosβ,cosγ......}之间的夹角。)

三、代数应用

  • 条件极值

  • 无条件极值

条件极值:

  • 拉格朗日乘数法

  • 极坐标

无条件极值:

A,C分别是f(x,y)对x和对y的二阶偏导,B是对x,y的二阶混合偏导。

对于f7d70dd38411a2ef685dd309bea5141a.png

  • >0:是极值点

                A<0:极大值点

                A>0:极小值点

  • <0:不是极值点

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值