Activity-Recognition
项目内容
模型训练及实验分析
手机行为识别APP开发
所需工具
实验实例全部运行于Python 3.6环境,尚需引入以下扩展包。
sklearn
pandas
numpy
matplotlib
seaborn
plotly
手机APP开发需如下支持。
JDK 9
实验数据
来自WISDM 数据集,志愿者数为36 人,共1098207 个采样点,包含以下六种行为。
静坐(Sitting)
站立(Standing)
上楼(Upstairs)
下楼(Downstairs)
步行(Walking)
慢跑(Jogging)
各志愿者采样数据分布直方图如下所示。
HARPY库
HARPY(Human Activity Recognition Python Library)库是为了基于加速度数据的人体行为识别方法开发的python库,其包裹了sklearn、numpy、matplotlib的部分功能,主要目的是为行为识别研究提供便捷。
目前HARPY共包含utils(工具包)、prepocess(数据预处理)、selection(特征、数据选择)、calculate(特征值计算)、train(模型训练)、parameter(参数调优)、visualization(数据可视化)等七个模块。更多扩展功能仍在开发中,源码可在activity_recognition目录获得,本目录下startup.py文件可用于各功能测试,

该项目基于Python的HARPY库,利用手机加速度传感器数据进行人体行为识别,包括静坐、站立、上下楼、步行和慢跑。项目涵盖了数据预处理、特征计算、模型训练和参数调优等步骤,并提供了数据可视化功能。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



