此随笔论述作者认为在控制理论与工程中重要的思想,并主要以电气工程领域相关问题作为背景来做介绍。属于一家之言,而且“思想”一词多有“大家”色彩,希望各位勿喷,仅供参考交流。
一、整体思想
在实际控制工程问题中,我们经常会遇到需要将相关结论从低维情形推广到高维情形的情况。如果选择不好合适的数学语言表达,将会使得相关结论的推广不仅在形式上不美观,而且还会因此掩盖一些更为普适的结论。这时候就需要我们运用整体思想,合理运用矩阵等高维数学语言,将结论表达出来,或者将问题建模。下面列举两例加以说明,希望大家能有体会。
我们都知道电感方程:
有时,我们还会遇到耦合情况,比如最简单的两端口互感情况,此时系统方程变为:
现在我们抛弃这种从底层出发的计算思路,将式(1)改写为
令
则在矩阵表达下,两端口互感模型(4)和标准的电感方程是一致的,那么我们可以大胆类推写出其储能方程为:
式(5)计算结果和式(2)是完全一样的,但是其体现出来的物理意义更深刻,形式更美。同时通过式(5)我们可以得出一关键结论,由于
再举一例,在新能源发电中,我们会遇到各节点出力调控问题,而各节点出力变化会影响负荷馈线电压分布,调控不当会导致节点电压越限等问题。为简化说明,我们将分布式电源简化为受控电流源,在已知线路阻抗、负荷等参数情况下,我们可以得到各馈线电压和分布式电源输出电流的关系,我们用矩阵形式表示出来即:
那我们的调控目标是在尽可能大地输出电流的情况下(为方便我们用
说到这里,熟悉矩阵的朋友应该想到了奇异值分解,我们可以找到
所以整体思想的核心在于是否能够站在更高维度,去寻找“统一”的“表达范式”,让相关结论在简单情形和复杂情形看起来能够一脉相承,做到形式和内涵的双重美。同时,要注意在构建完统一整体后,要认真对待在低维简单情形下简单到可以忽略的结论(如单端口电感大于0,高维情形下输入的方向性如
二、解耦思想
在电力系统、电力电子、电机等领域,经常需要设计闭环控制来达到令人满意的运行效果,我们常用“稳、准、快”来概括。这其中最基础的问题是保证系统的稳定性,因为这是其它控制目标(如控制精度“准”,控制速度“快”)的基本保障。所以在有关控制理论的书籍中,系统稳定性分析往往占据大量章节,如劳斯判据、根轨迹法、奈奎斯特判据(包含波特图)、系统特征值分析等。
通过专业的学习,特别是对于线性系统,我们基本能够熟悉的运用上述时域分析或者频域分析方法,久而久之忘记其背后的推导原理。笔者觉得有必要去重温一下这些判据背后的推导过程,体会其重要思想,进而指导我们进一步的研究,比如针对非线性系统的稳定性分析方法。下面,我们以特征值分析方法来说明在线性系统稳定性分析中体现出的重要思想——解耦。
众所周知,对于n阶线性系统
将
令
基于解耦思想的线性系统稳定性分析方法可以为非线性系统的稳定性分析提供指导。我们知道非线性系统的稳定性分析相比于线性系统而言,显得不那么直接,而且目前通用的办法是小信号稳定性分析和基于Lyapunov函数大信号稳定性分析。
小信号稳定性分析是将系统在平衡点处线性化,忽略高阶项,保留一阶项,近似转化为线性系统,然后再通过线性系统稳定性分析方法来进行判别。按照时域和频域近似,又可以分为时域小信号方法(Taylor展开)和频域描述函数法(Fourier展开),前者对扰动幅值有要求而对频率无要求,要求状态变量幅值变化不大,进而忽略高阶项;后者对扰动频率有要求而对幅值无要求,要求系统是低通的,从而高次谐波项被滤除掉,进而只需考虑基频响应。然而,针对小信号分析,最大的问题是不能进行定量评估,无法确定系统能够忍受的最大扰动范围,即不能告知“多小的扰动”算“小”,“多大的扰动”时小信号稳定性不再具有指导意义,也即不能确定非线性系统的吸引域(不严格意义来讲可等同于稳定域)。同时,对于明显的大扰动而言,小信号稳定性分析就无能为力。但是,针对大多数工程问题来讲,小信号稳定性分析仍然是较主流的分析方式,如电力系统或电力电子系统中常用的阻抗分析、模态分析等。
基于Lyapunov函数的大信号稳定性分析理论则不需要近似处理,可以定量的获得非线性系统的吸引域(往往是保守的)。针对某一非线性系统,寻找特定的非负函数
举例而言,最常用的Lyapunov函数形式之一是正定二次型即:
那么是否存在其它的可能去分析非线性系统稳定性呢?我们不妨再回顾线性系统稳定性分析方法中体现的解耦思想,如果我们能够找到合适的非线性变换
基于这个思路,我们现在的问题是如何寻找非线性变换
此外,我们在处理系统响应分析时,一般将原时域表达式分解为一些列一阶系统和二阶系统,即:
解耦思路还经常用于MIMO控制等等问题中,是我们处理控制问题,分析复杂系统最经常采用的套路。然而,解耦思路有时太平常甚至不值一提,导致我们在学习相关理论与方法的过程中多关注结论本身,而忽略了其背后推导过程中呈现的思想,进而面对复杂问题时不能从源头找到突破口。