电力系统非线性控制_电气与控制工程中主要思想浅析(一)

本文深入探讨了控制理论与工程中的整体思想和解耦思想。通过实例阐述了如何运用整体思想,以矩阵表示法解决两端口及多端口互感模型的储能问题,揭示了形式美和物理意义的重要性。同时,文章介绍了解耦思想在系统稳定性分析中的应用,详细解析了线性系统的特征值分析方法,并讨论了解耦在非线性系统稳定性分析中的潜在价值,提出了解耦思路在处理复杂问题时的重要作用。
摘要由CSDN通过智能技术生成

此随笔论述作者认为在控制理论与工程中重要的思想,并主要以电气工程领域相关问题作为背景来做介绍。属于一家之言,而且“思想”一词多有“大家”色彩,希望各位勿喷,仅供参考交流。

一、整体思想

在实际控制工程问题中,我们经常会遇到需要将相关结论从低维情形推广到高维情形的情况。如果选择不好合适的数学语言表达,将会使得相关结论的推广不仅在形式上不美观,而且还会因此掩盖一些更为普适的结论。这时候就需要我们运用整体思想,合理运用矩阵等高维数学语言,将结论表达出来,或者将问题建模。下面列举两例加以说明,希望大家能有体会。

我们都知道电感方程:

,进一步电感储能公式为:
,这两个公式是我们处理电磁变换相关问题的最基本公式。我们可以视之为单端口电感模型(即只有一个电感,端口电压和电感电流)。

有时,我们还会遇到耦合情况,比如最简单的两端口互感情况,此时系统方程变为:

式中
为自感系数,
为互感系数。那么我们还需要求解系统的储能情况,最朴实的想法是根据基本的电路理论来推导:
以上就是我们常见的两端口互感储能计算公式。

现在我们抛弃这种从底层出发的计算思路,将式(1)改写为

,也即:

在矩阵表达下,两端口互感模型(4)和标准的电感方程是一致的,那么我们可以大胆类推写出其储能方程为:

式(5)计算结果和式(2)是完全一样的,但是其体现出来的物理意义更深刻,形式更美。同时通过式(5)我们可以得出一关键结论,由于

式(6)表明电感矩阵
(在单端口电感模型下,此结论非常朴实,即电感值不能为负),即必须是正定的,根据正定矩阵判别公式,可以得到:
式(7)即为
互感系数必须满足的关系。按照类似的思路,我们还可以很方便地推导出三端口互感、四端口互感以及任意端口互感模型,以及相关系数需满足的关系式。

再举一例,在新能源发电中,我们会遇到各节点出力调控问题,而各节点出力变化会影响负荷馈线电压分布,调控不当会导致节点电压越限等问题。为简化说明,我们将分布式电源简化为受控电流源,在已知线路阻抗、负荷等参数情况下,我们可以得到各馈线电压和分布式电源输出电流的关系,我们用矩阵形式表示出来即:

其中
表示m个负荷节点电压,
表示n个分布式电源节点输出电流。

那我们的调控目标是在尽可能大地输出电流的情况下(为方便我们用

来进行电流综合评估),保证负荷节点电压不越限(为方便我们用
来进行电压综合评估)。那么我们可以进一步直白的翻译为:
一定的情况下,
越小越好,可控变量就是各个分布式电源输出电流的组合。

说到这里,熟悉矩阵的朋友应该想到了奇异值分解,我们可以找到

的最小奇异值对应的输入方向来调节分布式电源的出力,使其构成的输入向量
的最小奇异值对应的输入方向相同。
至此,我们将一个貌似优化问题,通过矩阵表达翻译成了一个奇异值分解问题,而且物理意义明显。

所以整体思想的核心在于是否能够站在更高维度,去寻找“统一”的“表达范式”让相关结论在简单情形和复杂情形看起来能够一脉相承,做到形式和内涵的双重美。同时,要注意在构建完统一整体后,要认真对待在低维简单情形下简单到可以忽略的结论(如单端口电感大于0,高维情形下输入的方向性如

),
在高维复杂情形中依然需要成立的内涵(多端口电感矩阵大于0(即正定),从而引申出互感系数约束关系)。

二、解耦思想

在电力系统、电力电子、电机等领域,经常需要设计闭环控制来达到令人满意的运行效果,我们常用“稳、准、快”来概括。这其中最基础的问题是保证系统的稳定性,因为这是其它控制目标(如控制精度“准”,控制速度“快”)的基本保障。所以在有关控制理论的书籍中,系统稳定性分析往往占据大量章节,如劳斯判据、根轨迹法、奈奎斯特判据(包含波特图)、系统特征值分析等。

通过专业的学习,特别是对于线性系统,我们基本能够熟悉的运用上述时域分析或者频域分析方法,久而久之忘记其背后的推导原理。笔者觉得有必要去重温一下这些判据背后的推导过程,体会其重要思想,进而指导我们进一步的研究,比如针对非线性系统的稳定性分析方法。下面,我们以特征值分析方法来说明在线性系统稳定性分析中体现出的重要思想——解耦

众所周知,对于n阶线性系统

(其中
是状态变量,
是状态矩阵,
是输入矩阵,
是输入),在BIBO稳定性意义下,系统稳定性可由
的特征值来判定,即
的所有特征值实部均小于0,则系统是稳定的;否则系统是不稳定的。那么,这个结论是怎么得来的呢?推导如下:(在下面分析中,由于BIBO意义下系统稳定性与输入无关,为表达方面,忽略
部分)

展开:
显然式(9)是无法求解的,因为多个变量耦合在一起且是微分方程。因此,我们对(1)进行
相似变换,将其变为对角解耦型。

,其中
是系统矩阵
的特征向量构成的矩阵,则有:
其中
,是对角阵,
的特征值。具体展开来为:
则(11)式变成了一些列解耦的一阶一次常微分方程,其求解变得相当容易,然后根据
来求解出
。而且我们可以直接根据
实部的情况来判断
的稳定性,进而判断出
的稳定性。这就是运用系统矩阵
的特征值来判定系统稳定性的原理,从推导过程中,我们不难看出,
最关键的一步是运用相似变换,将系统解耦对角化

基于解耦思想的线性系统稳定性分析方法可以为非线性系统的稳定性分析提供指导。我们知道非线性系统的稳定性分析相比于线性系统而言,显得不那么直接,而且目前通用的办法是小信号稳定性分析和基于Lyapunov函数大信号稳定性分析。

小信号稳定性分析是将系统在平衡点处线性化,忽略高阶项,保留一阶项,近似转化为线性系统,然后再通过线性系统稳定性分析方法来进行判别。按照时域和频域近似,又可以分为时域小信号方法(Taylor展开)频域描述函数法(Fourier展开),前者对扰动幅值有要求而对频率无要求,要求状态变量幅值变化不大,进而忽略高阶项;后者对扰动频率有要求而对幅值无要求,要求系统是低通的,从而高次谐波项被滤除掉,进而只需考虑基频响应。然而,针对小信号分析,最大的问题是不能进行定量评估,无法确定系统能够忍受的最大扰动范围,即不能告知“多小的扰动”算“小”,“多大的扰动”时小信号稳定性不再具有指导意义,也即不能确定非线性系统的吸引域(不严格意义来讲可等同于稳定域)同时,对于明显的大扰动而言,小信号稳定性分析就无能为力。但是,针对大多数工程问题来讲,小信号稳定性分析仍然是较主流的分析方式,如电力系统或电力电子系统中常用的阻抗分析、模态分析等。

基于Lyapunov函数的大信号稳定性分析理论则不需要近似处理,可以定量的获得非线性系统的吸引域(往往是保守的)。针对某一非线性系统,寻找特定的非负函数

,根据其导数情况来判断系统吸引域:
式(12)中在满足约束的条件下,方程
所圈定的区域,就决定了通过Lyapunov函数来获得的系统吸引域大小。然而,基于Lyapunov函数的大信号稳定性分析有以下挑战:a.寻找Lyapunov函数并没有通用套路,所以针对特定的问题选择合适的Lyapunov函数十分困难;b.系统吸引域评估和Lyapunov函数形式紧密相关,除非找到“完美”的Lyapunov函数,否则据此得到的吸引域都是保守的。

举例而言,最常用的Lyapunov函数形式之一是正定二次型即:

(其中
,并且假定系统平衡点位于原点0),那么由
所圈定的区域必定是超椭球体(二维情形是椭圆,中心为平衡点),这就大大限定了吸引域的范围,特别是针对吸引域关于平衡点严重不对称情形(平衡点跑偏了),通过上述形式的Lyapunov函数得到的系统吸引域将会非常保守。

0c4fe87b0e68f8da0e17bc9385b351c1.png
图1:Lyapunov函数吸引域保守性

那么是否存在其它的可能去分析非线性系统稳定性呢?我们不妨再回顾线性系统稳定性分析方法中体现的解耦思想,如果我们能够找到合适的非线性变换

,将非线性系统
转化为下列解耦形式:
那么我们的问题将会得到解答。因为式(13)中,一阶非线性系统稳定性很好判断,可以根据
的根的分布情况来判断
的吸引域及其稳定性,进而可以判断出原系统
的大信号稳定性。

基于这个思路,我们现在的问题是如何寻找非线性变换

?可以利用Poincaré正规型定理,根据多项式平衡原则来进行处理,具体细节我在这里就不再展开。根据这个思路,在电力系统领域,根据最终解耦形式
,发展出了正规型分析,非线性解耦,非线性模态解耦以及非线性正规型分析等一系列处理方法,当然还要克服共轭耦合、精度与截断等问题,这些是处于前沿研究领域了。

此外,我们在处理系统响应分析时,一般将原时域表达式分解为一些列一阶系统和二阶系统,即:

,然后利用一阶系统和二阶系统的响应求解结果来得到原信号的时域响应
(其中,
包含二阶系统的复特征根)。这是我们在线性系统和信号分析中经常用到的套路,
其本质也是运用到解耦思路,将原来高阶复杂系统拆分为简单的、我们熟悉的低阶系统,然后进行求解。

解耦思路还经常用于MIMO控制等等问题中,是我们处理控制问题,分析复杂系统最经常采用的套路。然而,解耦思路有时太平常甚至不值一提,导致我们在学习相关理论与方法的过程中多关注结论本身,而忽略了其背后推导过程中呈现的思想,进而面对复杂问题时不能从源头找到突破口

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值