本文实例讲述了Python实现的求解最小公倍数算法。分享给大家供大家参考,具体如下:
简单分析了一下,前面介绍的最大公约数的求解方法跟最小公倍数求解方法类似,只需要改一个简单的条件,然后做一点简单的其他计算。问题的解决也是基于分解质因式的程序。
程序实现以及测试case代码如下:
#!/usr/bin/python
from collections import Counter
def PrimeNum(num):
r_value =[]
for i in range(2,num+1):
for j in range(2,i):
if i % j == 0:
break
else:
r_value.append(i)
return r_value
def PrimeFactorSolve(num,prime_list):
for n in prime_list:
if num % n == 0:
return [n,num / n]
def PrimeDivisor(num):
num_temp =num
prime_range= PrimeNum(num)
ret_value =[]
while num not in prime_range:
factor_list= PrimeFactorSolve(num,prime_range)
ret_value.append(factor_list[0])
num =factor_list[1]
else:
ret_value.append(num)
return Counter(ret_value)
def LeastCommonMultiple(num1,num2):
dict1 =PrimeDivisor(num1)
dict2 =PrimeDivisor(num2)
least_common_multiple= 1
for key in dict1:
if key in dict2:
if dict1[key] > dict2[key]:
least_common_multiple*= (key ** dict1[key])
else:
least_common_multiple*= (key ** dict2[key])
for key in dict1:
if key not in dict2:
least_common_multiple*= (key ** dict1[key])
for key in dict2:
if key not in dict1:
least_common_multiple*= (key ** dict2[key])
return least_common_multiple
print(LeastCommonMultiple(12,18))
print(LeastCommonMultiple(7,2))
print(LeastCommonMultiple(7,13))
print(LeastCommonMultiple(24,56))
print(LeastCommonMultiple(63,81))
程序执行结果:
E:\WorkSpace\01_编程语言\03_Python\math>pythonleast_common_multiple.py
36
14
91
168
567
通过验证,计算结果准确。
PS:这里再为大家推荐一款本站相关在线工具供大家参考:
在线最小公倍数/最大公约数计算工具:http://tools.jb51.net/jisuanqi/gbs_gys_calc
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
本文标题: Python实现的求解最小公倍数算法示例
本文地址: http://www.cppcns.com/jiaoben/python/226976.html