python摄像头识别快递单号查询_免费对接快递鸟api单号识别查询接口(python)

由于自己网站需要对接一些物流查询快递,然后在网上搜了一圈发现快递鸟比较适合我

之前写快递api的时候,官网上只有php和.net的示例,而我使用python封装的相关功能踩了许多坑,才搞出来,分享一下我的方法。

【接入流程】

1>.注册快递鸟账号,

API_ID:XXXXXXX

API_KEY:XXXXXXXXXXXXXXXXXX

2>.服务申请 在个人中心里面申请需要的服务,即时查询功能有免费的服务3>.对接服务***写自己的业务逻辑***----本文主体4>.测试代码5>.正式使用

快递鸟物流单号查询api接口demo地址免费调用

注:登录快递鸟用户管理后台后获得用户ID和APIKey,此用于保证应用来源的可靠性,避免应用伪造,被不法使用。

使用说明:

1.kdniao.php 不需要修改改任何东西

2.example.php 按照说明使用

3.如果有什么不清楚的地方,请到快递鸟的官网咨询

4对接示例

Demo由快递鸟写好,只需要下载就可以运行用上,(自己做简单的修改)

(三)必传参数说明:

请求内容: OrderCode:

订单编号—非必须 ShipperCode:快递公司编码—必须 LogisticCode:物流单号—必须 系统参数 RequestData:

将JSON格式请求内容进行URL(utf-8)编码; EBusinessID:API_ID; RequestType:1002; DataSign:

请求内容(未编码)+AppKey)进行MD5加密,然后Base64编码,最后 进行URL(utf-8)编码

(四)功能封装

*省去了导包语句,根据自己情况添加

#请求数据处理

deforganize_request_data(shipper_code, logistic_code):"""编码请求数据"""original_request_data={"OrderCode": "", #默认设置为空

"ShipperCode": shipper_code,"LogisticCode": logistic_code,"IsHandleInfo": "0"}#数据转换为json格式

data =json.dumps(original_request_data)#进行url编码

#这里有个坑,有兴趣的可以试试

#request_data = quote(data),二者还是有区别的

request_data = quote(data).replace("%20%", "%")returnrequest_datadefgenerate_data_sign(shipper_code, logistic_code):"""生成datasign"""original_request_data={'OrderCode': '','ShipperCode': shipper_code,'LogisticCode': logistic_code,"IsHandleInfo": "0"}#APP_KEY = API_KEY_PRO

APP_KEY =API_KEY_PRO#请求内容(未编码) + AppKey

#此处有另一个坑,关于MD5加密,字典中存不存在空格,结果并不一样,而对于此接口,需要去除空格

data = json.dumps(original_request_data).replace(":", ":").replace(",", ",") +APP_KEY#md5加密

sign_md5 = hashlib.md5(data.encode("utf-8")).hexdigest()#Base64编码

data_sign = base64.b64encode(sign_md5.encode("utf-8")).decode("utf-8")return data_sign

/*MD5的空格效果 */

(五)视图逻辑:

classCompanyView(LoginRequiredView):"""快递公司编码展示"""

defget(self, request):

company_qs=KDCompany.objects.all()

company_list=[]for company incompany_qs:

company_list.append({"name": company.name,"code": company.code

})return http.JsonResponse({'code': RETCODE.OK, 'errmsg': 'OK', 'company_list': company_list})classKD(LoginRequiredView):"""展示快递详情"""

defpost(self, request):

shipper_codes= request.POST.get('shipper_code')#由于前端代码的XX,此处需处理取得的数据,以取得所需的code

shipper_code=shipper_codes.split(" ")[0]

logistic_code= request.POST.get('logistic_code')

request_data=organize_request_data(shipper_code, logistic_code)

data_sign=generate_data_sign(shipper_code, logistic_code)

API_ID=API_ID_PRO

API_URL=API_URL_PRO

data={"RequestData": request_data,"DataSign": data_sign,"RequestType": "1002","EBusinessID": API_ID,"ShipperCode": shipper_code,"LogisticCode": logistic_code,"DataType":"2"}#按要求设置请求头信息

headers = {'content-type': 'application/x-www-form-urlencoded','content-Encoding': 'charset=utf-8'}

kd_response= requests.post(url=API_URL, data=data,headers=headers)

kd_response.encoding="utf-8"trace_resp=json.loads(kd_response.content).get("Traces")

trace_black= ""traces= trace_black if type(trace_resp) == "NoneType" elsetrace_resp

context={"ShipperCode": shipper_code,"LogisticCode": logistic_code,"kd_response":traces

}return render(request, 'kd_trace.html', context)

OpenCV(Open Source Computer Vision Library)是一款开源的计算机视觉库,专门为图像和视频处理任务设计,广泛应用于学术研究、工业应用以及个人项目中。以下是关于OpenCV的详细介绍: 历史与发展 起源:OpenCV于1999年由英特尔公司发起,旨在促进计算机视觉技术的普及和商业化应用。该项目旨在创建一个易于使用、高效且跨平台的库,为开发者提供实现计算机视觉算法所需的基础工具。 社区与支持:随着时间的推移,OpenCV吸引了全球众多开发者和研究人员的参与,形成了活跃的社区。目前,OpenCV由非盈利组织OpenCV.org维护,并得到了全球开发者、研究机构以及企业的持续贡献和支持。 主要特点 跨平台:OpenCV支持多种操作系统,包括但不限于Windows、Linux、macOS、Android和iOS,确保代码能够在不同平台上无缝运行。 丰富的功能:库中包含了数千个优化过的函数,涵盖了计算机视觉领域的诸多方面,如图像处理(滤波、形态学操作、色彩空间转换等)、特征检测与描述(如SIFT、SURF、ORB等)、物体识别与检测(如Haar级联分类器、HOG、DNN等)、视频分析、相机校正、立体视觉、机器学习(SVM、KNN、决策树等)、深度学习(基于TensorFlow、PyTorch后端的模型加载与部署)等。 高效性能:OpenCV代码经过高度优化,能够利用多核CPU、GPU以及特定硬件加速(如Intel IPP、OpenCL等),实现高速图像处理和实时计算机视觉应用。 多语言支持:尽管OpenCV主要使用C++编写,但它提供了丰富的API绑定,支持包括C、Python、Java、MATLAB、JavaScript等多种编程语言,方便不同领域的开发者使用。 开源与免费:OpenCV遵循BSD开源许可证发布,用户可以免费下载、使用、修改和分发库及其源代码,无需担心版权问题。 架构与核心模块 OpenCV的架构围绕核心模块构建,这些模块提供了不同层次的功能: Core:包含基本的数据结构(如cv::Mat用于图像存储和操作)、基本的图像和矩阵操作、数学函数、文件I/O等底层功能。 ImgProc:提供图像预处理、滤波、几何变换、形态学操作、直方图计算、轮廓发现与分析等图像处理功能。 HighGui:提供图形用户界面(GUI)支持,如图像和视频的显示、用户交互(如鼠标事件处理)以及简的窗口管理。 VideoIO:负责视频的读写操作,支持多种视频格式和捕获设备。 Objdetect:包含预训练的对象检测模型(如Haar级联分类器用于人脸检测)。 Features2D:提供特征点检测(如SIFT、ORB)与描述符计算、特征匹配与对应关系估计等功能。 Calib3d:用于相机标定、立体视觉、多视图几何等问题。 ML:包含传统机器学习算法,如支持向量机(SVM)、K近邻(KNN)、决策树等。 DNN:深度神经网络模块,支持导入和运行预训练的深度学习模型,如卷积神经网络(CNN)。 应用领域 OpenCV广泛应用于: 科研与教育:作为计算机视觉教学和研究的基础工具,OpenCV简化了算法原型开发与验证过程。 工业自动化:在视觉检测、机器人导航、产品质量控制等工业场景中,OpenCV用于实时图像分析与决策。 安防监控:用于人脸识别、行人检测、行为分析等智能监控系统。 医疗影像分析:在医疗领域,OpenCV可用于医学图像处理、病灶检测、诊断辅助等应用。 自动驾驶:在车辆视觉感知系统中,OpenCV用于道路标志识别、障碍物检测、车道线识别等任务。 多媒体应用:如图像编辑软件、AR/VR应用、游戏开发等,利用OpenCV进行图像和视频处理。 物联网与嵌入式系统:在资源受限的嵌入式设备上,OpenCV提供轻量级的计算机视觉解决方案。 学习与社区资源 OpenCV拥有丰富的官方文档、教程、示例代码以及活跃的开发者社区,包括GitHub、StackOverflow、官方论坛等,为学习和使用OpenCV提供了有力支持。此外,有许多书籍、在线课程、博客文章和研讨会专门讲解OpenCV的使用和计算机视觉技术。 综上所述,OpenCV作为一款功能强大、高效、跨平台且开源的计算机视觉库,为开发者提供了实现各类图像和视频处理任务所需的工具箱,其广泛的应用领域和活跃的社区支持使之成为计算机视觉领域不可或缺的开发工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值