5种技巧,以帮助你在使用Python时进行迭代循环。
For循环是大多数刚接触Python的程序员会采用的一种循环方式。因为for循环可以在不费吹灰之力的情况下对数据执行很多操作。但是,通常很容易让你陷入简单的迭代世界,而没有利用某些更高效,更简洁的迭代方法以及应用于更多for循环的技巧。
使用这些接下来我要介绍的技巧不仅可以使for循环更快,而且还可以使你的代码更简洁,并为Python中潜在的循环机会开辟了新的大门。
zip:一次遍历两个列表
真正有价值的一种工具是能够一次遍历两个数组的能力。在其他语言中,这显然要困难得多,而我真的很欣赏Python的便捷性。为了一次遍历两个数组,我们使用zip()方法就可以做到。
for first,second in zip(array1,array2):print(first) print(second)
一个很好的例子来说明这一点,方法是用一个偶数列表和一个奇数整数列表进行计数:
odds = [1,3,5,7,9]evens = [2,4,6,8,10]for oddnum, evennum in zip(odds,evens):print(oddnum) print(evennum)
我们的输出将是:
12345678910
range:编写C样式循环
尽管它看起来很基础,但是使用经典的C风格的循环可以做很多事情。
for i in range(10):
print(i)
if i == 3:
i.update(7)
有些人可能会认为这不一定是C的for循环,但这也是无需编写迭代方法就可以获得较为接近C的样式。而你也可以尝试编写一个新的迭代器,使其尽可能接近经典的C循环:
class forrange:def __init__(self, startOrStop, stop=None, step=1): if step == 0: raise ValueError('forrange step argument must not be zero') if not isinstance(startOrStop, int): raise TypeError('forrange startOrStop argument must be an int') if stop is not None and not isinstance(stop, int): raise TypeError('forrange stop argument must be an int') if stop is None: self.start = 0 self.stop = startOrStop self.step = step else: self.start = startOrStop self.stop = stop self.step = step def __iter__(self): return self.foriterator(self.start, self.stop, self.step) class foriterator: def __init__(self, start, stop, step): self.currentValue = None self.nextValue = start self.stop = stop self.step = step def __iter__(self): return self def next(self): if self.step > 0 and self.nextValue >= self.stop: raise StopIteration if self.step < 0 and self.nextValue <= self.stop: raise StopIteration self.currentValue = forrange.forvalue(self.nextValue, self) self.nextValue += self.step return self.currentValue class forvalue(int): def __new__(cls, value, iterator): value = super(forrange.forvalue, cls).__new__(cls, value) value.iterator = iterator return value def update(self, value): if not isinstance(self, int): raise TypeError('forvalue.update value must be an int') if self == self.iterator.currentValue: self.iterator.nextValue = value + self.iterator.step
枚举
Python中的enumerate方法允许Python对从数组中出来的索引编号进行编号。为了说明这一点,我将列出三个元素:
l = [5,10,15]
现在我们可以像这样访问数组索引:
l [1] 10 l [0] 5 l [2] 15
通过这些列表进行枚举时,我们将获得索引位置,以及一个新变量的位置。注意新变量的类型。
Python会自动将这些索引放入一个元组。而我当然更愿意在一个元素的Python字典中接收结果。所以我们可以使用Python的将枚举转换为Python字典
输入:
data= dict(枚举(l))
结果:
>>>data{0:5,1:1:10,2:15}
Sorted()
对于任何处理大量数据的人来说,排序方法都是一种必不可少的方法,这是实际项目中经常需要用到的。排序按预期方式工作,字符串按字母顺序从字母A到字母B进行排序,并对整数和双精度从-∞升序进行排序。
关于此函数的重要说明:它不适用于包含字符串,整数或浮点数的列表。
l = [15,6,1,8]for i in sorted(l): print(i)16815
for i in sorted(l,reverse = True): print(i)15861
对于我们可用的最后一个参数,我们可以使用一个键。键是应用于给定循环内每个隐藏的函数。为此,我喜欢使用lambda,它将创建一个匿名且可调用的函数。
l.sort(key = lambda s:s [::-1])
Filter():仅循环所需的数据。
过滤器的功能是在处理数据堆时帮助代码有性能方面上的提升。过滤器完全符合遍历的功能,并在迭代之前过滤掉数据。当你只想对特定范围内的数据产生影响而不必对其施加条件时,这就是非常管用的方式。
people = [{"name": "John", "id": 1}, {"name": "Mike", "id": 4}, {"name": "Sandra", "id": 2}, {"name": "Jennifer", "id": 3}]for person in filter(lambda i: i["id"] % 2 == 0, people):... print(person)... {'name': 'Mike', 'id': 4}{'name': 'Sandra', 'id': 2}
结论
理想情况下,将这些方法应用于Python代码不仅使其更加简洁,而且很有可能更快。利用这些方法将为你提供更加高效的迭代能力,而且在处理大量数据时就变得容易许多。
感谢阅读!感谢关注!