python 双重差分_双重差分法(DID)介绍

本文介绍了双重差分法(DID)作为一种政策效应评估方法,适用于面板数据,通过对比政策实施前后的差异来估计政策影响。DID方法依赖于共同趋势假设,需要进行稳健性检验,包括共同趋势的检验和处理变量作用机制的排他性检验。文中还提到了DID模型的多种形式及其在实际应用中的灵活性。
摘要由CSDN通过智能技术生成

双重差分法,英文名Differences-in-Differences,别名“倍差法”,小名“差中差”。作为政策效应评估方法中的一大利器,双重差分法受到越来越多人的青睐,概括起来有如下几个方面的原因:(1)可以很大程度上避免内生性问题的困扰:政策相对于微观经济主体而言一般是外生的,因而不存在逆向因果问题。此外,使用固定效应估计一定程度上也缓解了遗漏变量偏误问题。(2)传统方法下评估政策效应,主要是通过设置一个政策发生与否的虚拟变量然后进行回归,相较而言,双重差分法的模型设置更加科学,能更加准确地估计出政策效应。(3)双重差分法的原理和模型设置很简单,容易理解和运用,并不像空间计量等方法一样让人望而生畏。(4)尽管双重差分法估计的本质就是面板数据固定效应估计,但是DID听上去或多或少也要比OLS、FE之流更加“时尚高端”,因而DID的使用一定程度上可以满足“虚荣心”。

在细致介绍DID之前首先强调一点,一般而言,DID仅适用于面板数据,因此在只有截面数据时,还是不要浪费心思在DID上了。不过,事无绝对,在某些特殊的情景下,截面数据通过巧妙的构造也是可以运用DID的,大神Duflo曾经就使用截面数据和DID研究了南非的养老金计划项目对学前儿童健康的影响,感兴趣的可以去搜搜大神的文章。

具体来说,基准的DID模型设置如下:

其中,du为分组虚拟变量,若个体i受政策实施的影响,则个体i属于处理组,对应的du取值为1,若个体i不受政策实施的影响,则个体i属于对照组&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值