大话数据结构系列之数学基础知识补充

本文介绍了数学归纳法的概念,通过多米诺效应解释其原理,并运用到等差数列求和公式的证明中。接着讨论了二分法的对数推导,时间复杂度的比较,以及快速查询的时间复杂度。此外,文章还阐述了对数的起源、定义及其在简化计算中的作用,并简要回顾了相关数学公式。
摘要由CSDN通过智能技术生成

数学归纳法

数学归纳法是以一种不同的方式来证明任意一个给定的情形都是正确的(第一个,第二个,第三个,一直下去概不例外)的数学定理。
但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的“演绎推理法”。事实上,所有数学证明都是演绎法。

实际以多米诺效应推导

1、证明第一张骨牌会倒。
2、证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。
及可证明: 所有的骨牌都会倒下。

求证等差数列结论是否正确:

在这里插入图片描述 ——等差数列求和公式
第一步,验证该公式在 n = 1 时成立。即有左边=1,右边=在这里插入图片描述 =1,所以这个公式在n = 1时成立。
第二步,需要证明假设n = m 时公式成立,那么可以推导出n = m+1 时公式也成立。步骤如下:
假设n = m 时公式成立,即 在这里插入图片描述(等式1)
然后在等式两边同时分别加上m + 1 得到 在这里插入图片描述(等式2)
这就是n = m+1 时的等式。我们下一步需要根据 等式1证明 等式2 成立。通过因式分解合并,等式2的右边在这里插入图片描述
也就是
在这里插入图片描述
这样我们就完成了由n=m成立推导出n=m+1成立的过程。

结论: 对于任意自然数n,等差数列公式均成立。

引用自“科普中国”https://baike.baidu.com/item/%E6%95%B0%E5%AD%A6%E5%BD%92%E7%BA%B3%E6%B3%95/5155524?fr=aladdin

二分法的对数推导

分析:二分查找在最坏的情况下依次是n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值