这显然很简单,但是作为一个笨拙的新手,我陷入了困境。
我有一个包含3列的CSV文件,分别是该办公室的州,办公室ID和销售。
我想计算给定状态下每个办公室的销售百分比(每个州的所有百分比的总和为100%)。
df = pd.DataFrame({'state': ['CA', 'WA', 'CO', 'AZ'] * 3,
'office_id': range(1, 7) * 2,
'sales': [np.random.randint(100000, 999999)
for _ in range(12)]})
df.groupby(['state', 'office_id']).agg({'sales': 'sum'})
返回:
sales
state office_id
AZ 2 839507
4 373917
6 347225
CA 1 798585
3 890850
5 454423
CO 1 819975
3 202969
5 614011
WA 2 163942
4 369858
6 959285
我似乎无法弄清楚如何“高达”的state水平groupby与总起来sales对整个state计算分数。