【目标检测】Fast RCNN算法详解

转载 2018年04月17日 19:36:56

Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

转 https://blog.csdn.net/shenxiaolu1984/article/details/51036677

继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码

同样使用最大规模的网络,Fast RCNN和RCNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率相差无几,约在66%-67%之间.

思想

基础:RCNN

简单来说,RCNN使用以下四步实现目标检测: 
a. 在图像中确定约1000-2000个候选框 
b. 对于每个候选框内图像块,使用深度网络提取特征 
c. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 
d. 对于属于某一特征的候选框,用回归器进一步调整其位置 
更多细节可以参看这篇博客

改进:Fast RCNN

Fast RCNN方法解决了RCNN方法三个问题:

问题一:测试时速度慢 
RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。 
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。

问题二:训练时速度慢 
原因同上。 
在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

问题三:训练所需空间大 
RCNN中独立的分类器和回归器需要大量特征作为训练样本。 
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

以下按次序介绍三个问题对应的解决方法。

特征提取网络

基本结构

图像归一化为224×224直接送入网络。

前五阶段是基础的conv+relu+pooling形式,在第五阶段结尾,输入P个候选区域(图像序号×1+几何位置×4,序号用于训练)?。 
这里写图片描述

注:文中给出了大中小三种网络,此处示出最大的一种。三种网络基本结构相似,仅conv+relu层数有差别,或者增删了norm层。

roi_pool层的测试(forward)

roi_pool层将每个候选区域均匀分成M×N块,对每块进行max pooling。将特征图上大小不一的候选区域转变为大小统一的数据,送入下一层。 
这里写图片描述

roi_pool层的训练(backward)

首先考虑普通max pooling层。设xixi为输入层的节点,yjyj为输出层的节点。 

Lxi={0Lyjδ(i,j)=falseδ(i,j)=true∂L∂xi={0δ(i,j)=false∂L∂yjδ(i,j)=true

其中判决函数δ(i,j)δ(i,j)表示i节点是否被j节点选为最大值输出。不被选中有两种可能:xixi不在yjyj范围内,或者xixi不是最大值。

对于roi max pooling,一个输入节点可能和多个输出节点相连。设xixi为输入层的节点,yrjyrj为第rr个候选区域的第jj个输出节点。 
这里写图片描述 

Lxi=Σr,jδ(i,r,j)Lyrj∂L∂xi=Σr,jδ(i,r,j)∂L∂yrj

判决函数δ(i,r,j)δ(i,r,j)表示i节点是否被候选区域r的第j个节点选为最大值输出。代价对于xixi的梯度等于所有相关的后一层梯度之和。

网络参数训练

参数初始化

网络除去末尾部分如下图,在ImageNet上训练1000类分类器。结果参数作为相应层的初始化参数。 
这里写图片描述 
其余参数随机初始化。

分层数据

在调优训练时,每一个mini-batch中首先加入N张完整图片,而后加入从N张图片中选取的R个候选框。这R个候选框可以复用N张图片前5个阶段的网络特征。 
实际选择N=2, R=128。

训练数据构成

N张完整图片以50%概率水平翻转。 
R个候选框的构成方式如下:

类别比例方式
前景25%与某个真值重叠在[0.5,1]的候选框
背景75%与真值重叠的最大值在[0.1,0.5)的候选框

分类与位置调整

数据结构

第五阶段的特征输入到两个并行的全连层中(称为multi-task)。 
这里写图片描述
cls_score层用于分类,输出K+1维数组pp,表示属于K类和背景的概率。 
bbox_prdict层用于调整候选区域位置,输出4*K维数组tt,表示分别属于K类时,应该平移缩放的参数。

代价函数

loss_cls层评估分类代价。由真实分类uu对应的概率决定: 

Lcls=logpuLcls=−log⁡pu

loss_bbox评估检测框定位代价。比较真实分类对应的预测参数tutu和真实平移缩放参数为vv的差别: 

Lloc=Σ4i=1g(tuivi)Lloc=Σi=14g(tiu−vi)

g为Smooth L1误差,对outlier不敏感: 
g(x)={0.5x2|x|0.5|x|<1otherwiseg(x)={0.5x2|x|<1|x|−0.5otherwise

总代价为两者加权和,如果分类为背景则不考虑定位代价: 

L={Lcls+λLlocLclsuuL={Lcls+λLlocu为前景Lclsu为背景

源码中bbox_loss_weights用于标记每一个bbox是否属于某一个类

全连接层提速

分类和位置调整都是通过全连接层(fc)实现的,设前一级数据为xx后一级为yy,全连接层参数为WW,尺寸u×vu×v。一次前向传播(forward)即为: 

y=Wxy=Wx

计算复杂度为u×vu×v

WW进行SVD分解,并用前t个特征值近似: 

W=UΣVTU(:,1:t)Σ(1:t,1:t)V(:,1:t)TW=UΣVT≈U(:,1:t)⋅Σ(1:t,1:t)⋅V(:,1:t)T

原来的前向传播分解成两步: 

y=Wx=U(ΣVT)x=Uzy=Wx=U⋅(Σ⋅VT)⋅x=U⋅z

计算复杂度变为u×t+v×tu×t+v×t。 
在实现时,相当于把一个全连接层拆分成两个,中间以一个低维数据相连。 
这里写图片描述

在github的源码中,这部分似乎没有实现。

实验与结论

实验过程不再详述,只记录结论 
- 网络末端同步训练的分类和位置调整,提升准确度 
- 使用多尺度的图像金字塔,性能几乎没有提高 
倍增训练数据,能够有2%-3%的准确度提升 
- 网络直接输出各类概率(softmax),比SVM分类器性能略好 
更多候选窗不能提升性能

同年作者团队又推出了Faster RCNN,进一步把检测速度提高到准实时,可以参看这篇博客。 
关于RCNN, Fast RCNN, Faster RCNN这一系列目标检测算法,可以进一步参考作者在15年ICCV上的讲座Training R-CNNs of various velocities

RCNN, Fast RCNN, Faster RCNN这一系列目标检测算法

  • 2016年11月10日 11:13
  • 17.4MB
  • 下载

目标检测 Fast R-CNN 论文笔记

此篇文章是 Ross Girshick 大牛在微软研究所单撸出来的一篇文章。基于14年 R-CNN 的大获成功,作者提出了其改进算法 Fast R-CNN 。Fast R-CNN 在VGG16 net...
  • Cyiano
  • Cyiano
  • 2017-04-12 13:44:17
  • 1044

Fast R-CNN笔记

1、简介 Fast R-CNN将整个图片送入网络时同时将object proposal(这里称为RoI,一张图片中得到约2k个)也送入网络,每一个RoI被Rol pooling layer(相当于一...
  • XZZPPP
  • XZZPPP
  • 2016-05-11 20:05:29
  • 3532

基于深度学习的目标检测算法发展详解

  • 2018年03月21日 12:23
  • 3.47MB
  • 下载

【目标检测】RCNN算法详解

深度学习用于目标检测的RCNN算法
  • shenxiaolu1984
  • shenxiaolu1984
  • 2016-04-05 23:10:36
  • 90629

【目标检测】Faster RCNN算法详解

继RCNN,fast RCNN之后,目标检测界的领军人物Ross Girshick在2015年提出faster RCNN。目标检测速度达到15fps。...
  • shenxiaolu1984
  • shenxiaolu1984
  • 2016-04-21 15:08:06
  • 135100

目标检测方法系列——R-CNN, SPP, Fast R-CNN, Faster R-CNN, YOLO, SSD

目标检测方法系列——R-CNN, SPP, Fast R-CNN, Faster R-CNN, YOLO, SSD   目录 相关背景 从传统方法到R-CNN 从R-CNN到SPP Fas...
  • majinlei121
  • majinlei121
  • 2016-12-25 16:19:42
  • 4101

Fast RCNN、Faster RCNN理论学习笔记

Fast RCNN、Faster RCNN理论学习笔记:非极大值抑制(NMS): http://blog.csdn.net/u014365862/article/details/53376516 ...
  • forest_world
  • forest_world
  • 2016-12-12 14:46:40
  • 1440

Fast RCNN训练阶段代码解析

fast rcnn 代码
  • timeflyhigh
  • timeflyhigh
  • 2016-06-30 15:26:58
  • 1843

深度学习(十五):Matconvnet小试fast-rcnn目标检测

该节来试验一下Matconvnet集成的fast-rcnn目标检测模型。去Matconvnet的官网可以发现,当前最新一版的Matconvnet-1.0-beta23 集成了fast-rcnn模型,注...
  • on2way
  • on2way
  • 2016-11-01 13:06:51
  • 6338
收藏助手
不良信息举报
您举报文章:【目标检测】Fast RCNN算法详解
举报原因:
原因补充:

(最多只允许输入30个字)